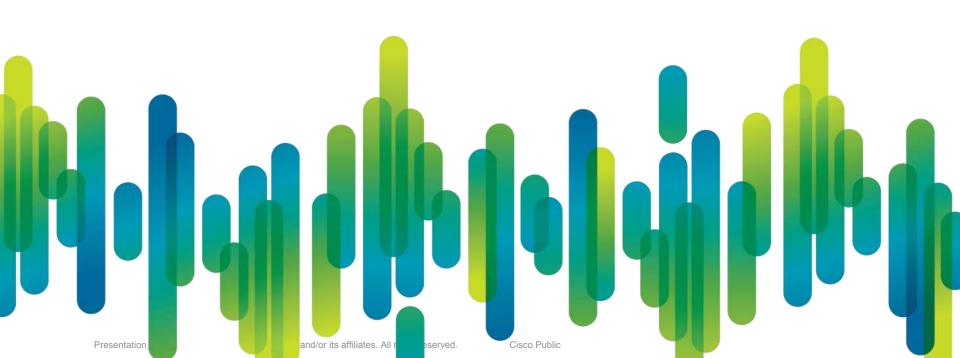
ıı|ııı|ıı cısco

Migrating Your LAN to IEEE 802.1X

Session Objectives


At the end of the session, you should understand:

- How 802.1X works
- The benefits of deploying 802.1X
- How to configure and deploy 802.1X using Cisco switches, ACS 5.1 and various supplicants.
- How to integrate existing technologies such as IP telephony, guest access, PXE, etc
- The value and application of deployment scenarios
- How to make this work when you get back to your lab

You should also:

Provide us with feedback!

Identity and Authentication Overview

Why Identity Is Important

Who are you?

802.1X (or supplementary method) authenticates the user

Keep the Outsiders Out

Where can you go?

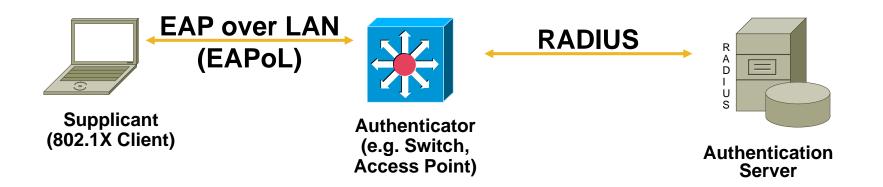
Based on authentication, user is placed in correct VLAN

Keep the Insiders Honest

What service level to you receive?

The user can be given per-user services (ACLs today, more to come)

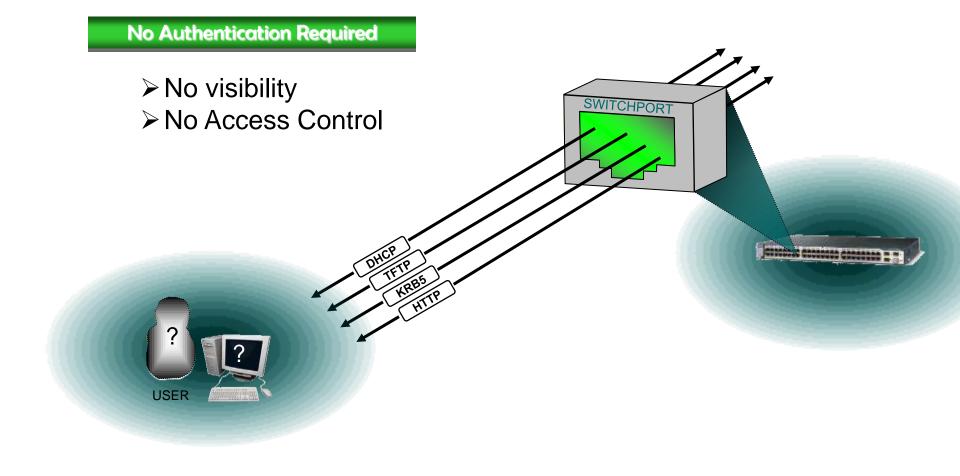
Personalize the Network



What are you doing?

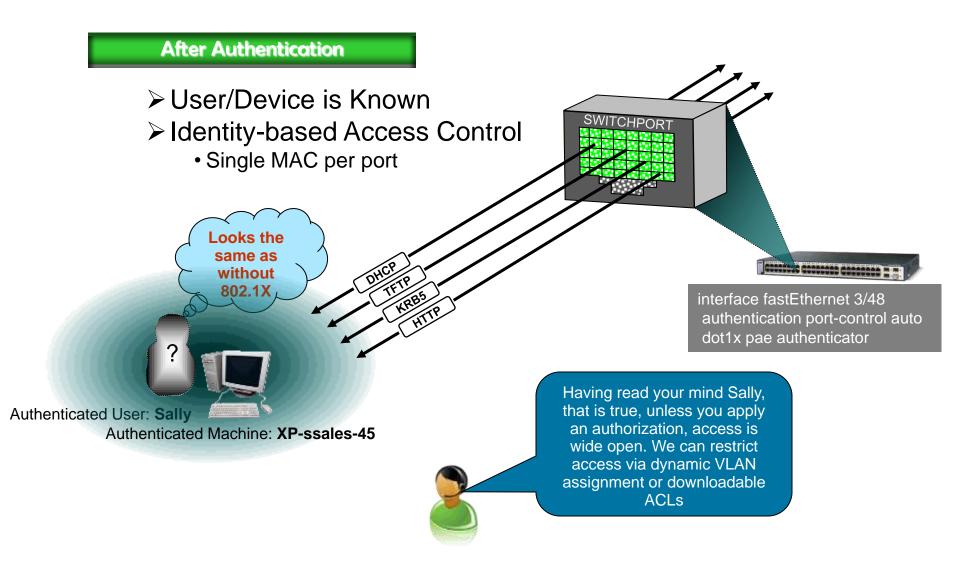
The user's identity and location can be used for tracking and accounting

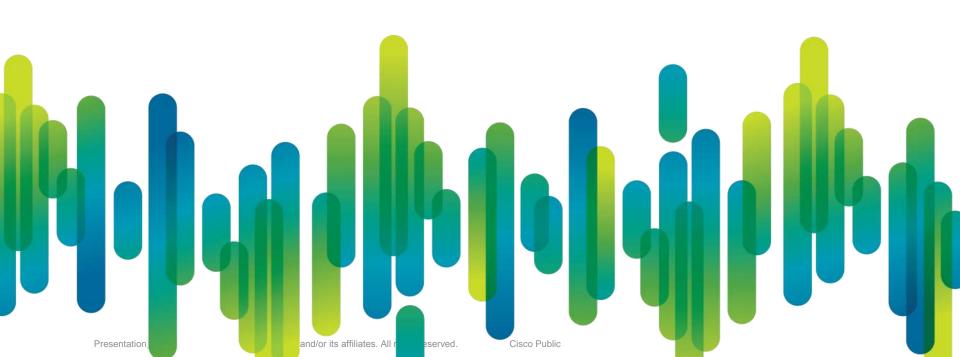
Increase Network Visibility


IEEE 802.1X: The Foundation of Identity

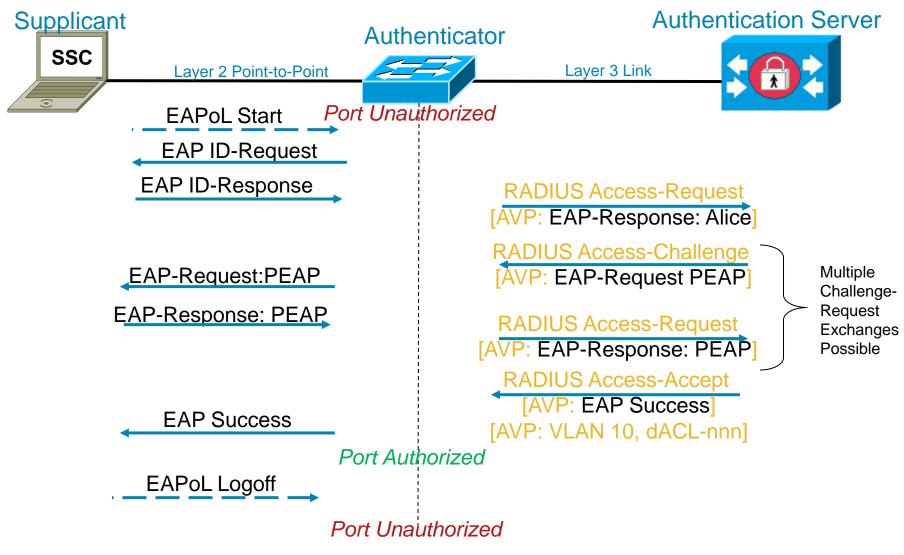
- ✓ IEEE 802.1 working group standard
- ✓ Provides port-based access control using authentication

Enforcement via MACbased filtering and portstate monitoring Defines encapsulation for Extensible Authentication Protocol (EAP) over IEEE 802 media— "EAPoL"


Default Port State without 802.1X


Default Security with 802.1X

Before Authentication ➤ No visibility (yet) > Strict Access Control One Physical Port -> Two Virtual ports Uncontrolled port (EAPoL only) Controlled port (everything else) interface fastEthernet 3/48 authentication port-control auto dot1x pae authenticator **USER** ALL traffic except EAPoL is dropped


Default Security with 802.1X

Identity and Authentication 802.1X, EAP, and RADIUS

A Closer Look at 802.1X

What Does EAP Do?

- Establishes and manages connection
- Allows authentication by encapsulating various types of authentication exchanges
 - Actual authentication exchanges are called EAP Methods
- Provides a flexible link layer security framework
 - Can run over any link layer (PPP, 802, etc.)
- Defined by RFC 3748

EAP Payload 802.1X Header Ethernet Header

EAP Payload
RADIUS
UDP
IP Header

Authentication Server

EAP Authentication Methods

Challengeresponse-based

- MD5: uses MD5 based challenge-response for authentication
- LEAP: username/password authentication
- EAP-MSCHAPv2: username/password MSCHAPv2 challengeresponse authentication

Cryptographicbased

• EAP-TLS: x.509 v3 PKI certificates and the TLS mechanism for authentication

Tunneling methods

- PEAP: encapsulates other EAP types in an encrypted tunnel
- EAP-TTLS: encapsulates other EAP types in an encrypted tunnel
- EAP-FAST: designed to not require client certificates

Other

- EAP-GTC: generic token and OTP authentication
- EAP-SIM: SIM-based authentication

Tunneling Methods

- Some EAP methods setup an encrypted tunnel and pass credentials through the tunnel
- Anonymous outer identity Provides the ability to completely obfuscate the user's credentials

SSC / ACS - Yes

Windows Native / IAS - No

- Some EAP methods require an EAP method inside the tunnel (PEAP and FAST)
- Some EAP methods do not require an EAP method inside the tunnel (TTLS) – used with legacy RADIUS

EAP Protocols: Feature Support

	EAP-TLS	PEAP	EAP-FAST
Single Sign-on	Yes	Yes	Yes
Login Scripts (Active Directory)	Yes	Yes	Yes
Password Expiration (AD)	N/A	Yes	Yes
Client and OS Availability	SSC, XP, Win7 and Others	SSC, XP, Win7 and Others	SSC, Win7 and Others
MS DB Support	Yes	Yes	Yes
LDAP DB Support	Yes	Yes	Yes
OTP Support	No	Yes	Yes
Off-line Dictionary Attacks	No	No	No
Server Certificates Required	Yes	Yes	No
Client Certificates Required	Yes	No	No
Computing Impact	High	Medium	Low

Factors that Drive EAP Method

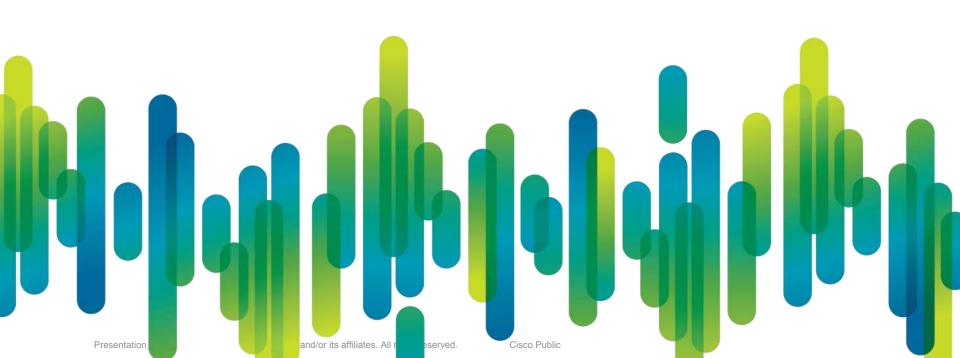
Use as many methods as needed depending on devices

Enterprise security policy

- Certificate Authority deployment may drive EAP type
- Two factor authentication may require EAP-TLS
- Security vs. Convenience Trade-offs

Client support

- Windows supports EAP-TLS, PEAP w/EAP-MSCHAPv2, PEAP w/EAP-TLS
- 3rd party supplicants support a large variety of EAP types, but not all

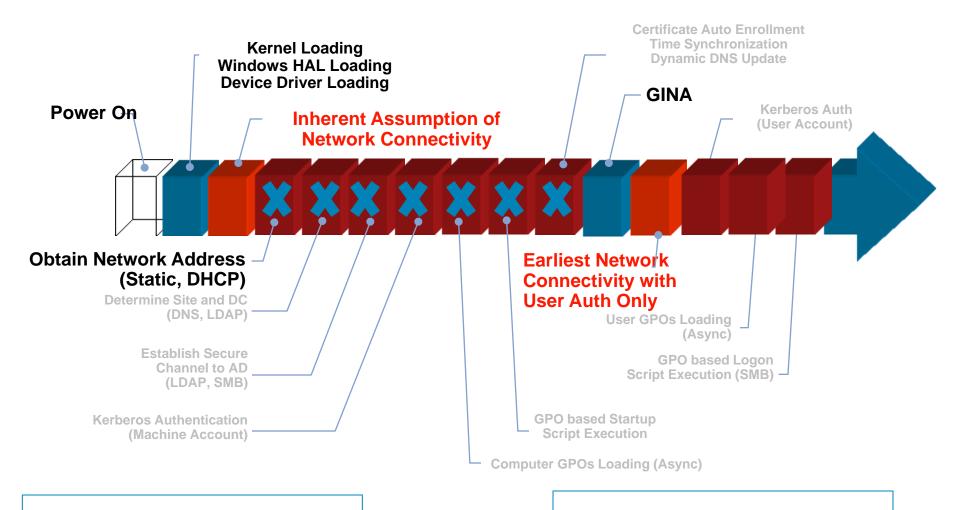

Authentication server support

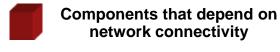
 RADIUS servers support a large variety of EAP types, but not all

Identity store

- PEAP w/EAP-MSCHAPv2 can only be used with authentication stores that store passwords in MSCHAPv2 format
- Not every identity store supports all the EAP types

Identity & Authentication: Who (or What) Authenticates?




Problem Statement

- Who should the network authenticate ?
 - M user using a device
 - A device
 - Both the user and the device
- Device boot process and network connectivity assumption
 - Boot without using network resource Standalone
 - Boot from the network − Xterm, NetPC, PXE
 - Boot and use network resources networked
 - Network File System
 - Managed devices: Connection to LDAP, Active Directory
 - Device health check: Patch level checker, Central AV system

Example: Network Assumption

Microsoft Windows

Components broken with 802.1X *user* authentication only

802.1X Device and User authentication

User authentication ONLY

Possible when no dependency of the device used regarding network resources

Can run user script to access network resources post login.

Be careful, this can breaks Microsoft group and system policies

Device authentication ONLY

Mandatory as soon as exist dependency of Network resources

Authorization is link to the device; not the user using the device

Device and User

Authorization is highly flexible

Advanced features needed on supplicants

Synchronization needed with others applications & process on the client PC : DHCP, DNS, NFS, etc..

Switches contexts when going from one to the other

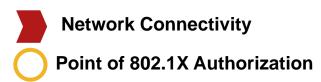
MICROSOFT Windows Example

User and Device Authentication

User Authentication

^{*} No Connectivity to Domain Controller Until User Logs In

Machine Authentication



^{* 802.1}X Early in Boot Process

User + Machine Authentication

^{*} Users Can Be Individually Authenticated

Configuring Machine and/or User Auth

Microsoft Windows Example

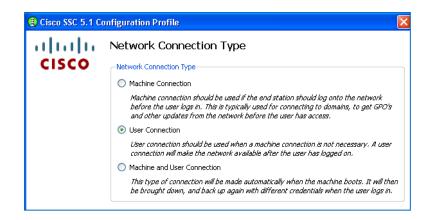
- Mode is supplicant dependent
- Native MS supplicants pre-Win7

Controlled by registry keys (SP2) or XML (SP3 & Vista) & network properties authentication tab

Authenticate as computer when computer information is available

Can be set by GPO (Wireless only for XP, Wired and Wireless for Vista)

Win7 supplicants



Cisco SSC


Can be configured per profile

Centrally configured via Admin tool

Deployed via MSI

Identity & Authentication: 802.1X Supplicants

802.1X Supplicants

- Windows Win7— Yes
- Windows Vista —Yes
- Windows XP—Yes
- Windows 2000—Yes
- Windows CE / Mobile Yes
- Linux —Yes
- HP-UX —Yes
- Solaris —Yes
- HP printers & switches —Yes
- Apple OS X —Yes
- Apple iPhone Yes
- Nokia —Yes
- Cisco IP Phone —Yes
- Cisco AP —Yes
- Cisco Switches Yes (12.2.50)

IP Phones

Pocket PC

PC Supplicants Types

- Operating System MAC OS X, XP Wireless Zero Config, Vista Native, Win7 Native
- Hardware Specific Intel Proset, Lenovo Access Connections
- Premium Cisco Secure Services Client, Juniper Odyssey
- Open Source –

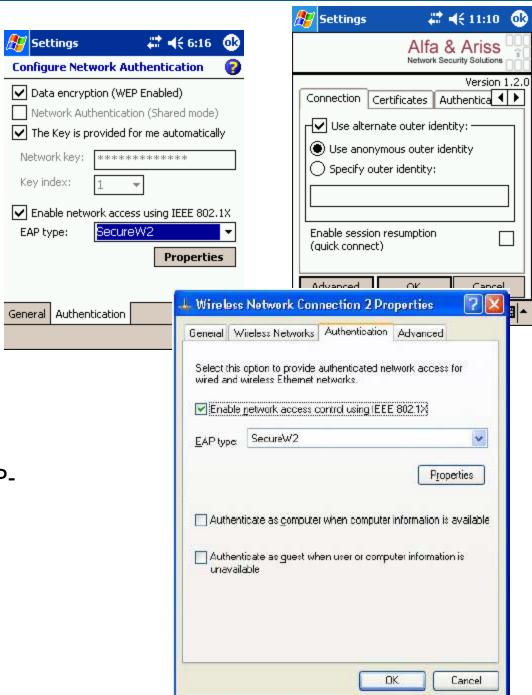
Xsupplicant (Open 1X) – http://open1x.sourceforge.net/
WPA supplicant - http://hostap.epitest.fi/wpa_supplicant/
Secure W2 - http://www.securew2.com/

Xsupplicant

- Open Source
- No additional up-front cost
- Username / Password
- Manual Connect
- User Authentication
- Server Validation
- Wired & wireless
- PEAP, TTLS, FAST, and MD5
- Application –
 Simple Authentication

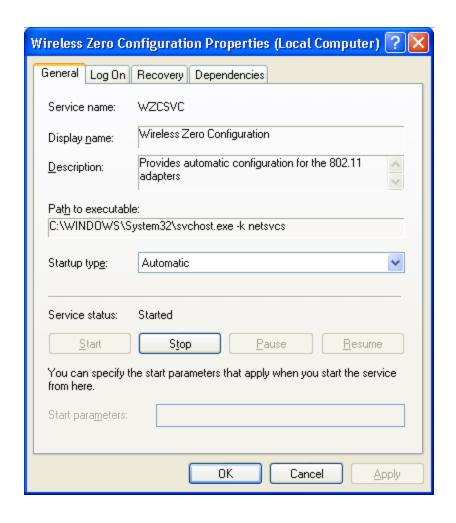
No outside support required

WPA Supplicant


- Open Source
- Linux, BSD, Mac OS X, and Windows
- No additional up-front cost
- Wired & wireless
- EAP-TLS
 EAP-PEAP/MSCHAPv2-TLS-GTC-OTP-MD5
 EAP-TTLS/MD5-GTC-OTP-MSCHAPV2-TLS-PAP-CHAP
 EAP-SIM EAP-AKA EAP-PSK EAP-FAST EAP-PAX EAP-SAKE EAP-IKEv2 EAP-GPSK (experimental)
 LEAP

Secure W2

- Open Source
- Windows suite with Windows Mobile 5/6 or Pocket PC 2003/2005 support and 2000/XP/Vista
- Support available
- Wired & wireless
- Plug-in in existing Microsoft 802.1X/EAP(EapHost)
- Support of EAP-TTLS and EAP-GTC



Microsoft Native Supplicant: XP SP2

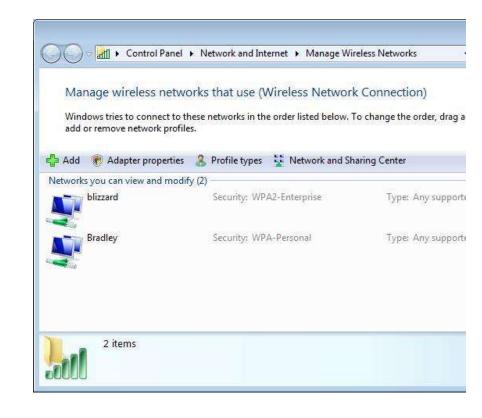
- Integral to operating system
 nothing to deploy except configuration
 No additional cost, licensed as part of OS
- Same service controls wireless and wired 802.1X

Wireless Zero Config (WZC)

- Integrated machine and user profile
- Registry changes required for proper operation of wired 802.1X
- EAP Types PEAP/MSCHAPv2, PEAP/TLS, TLS, MD5

Vista & XP SP3 Native Supplicant

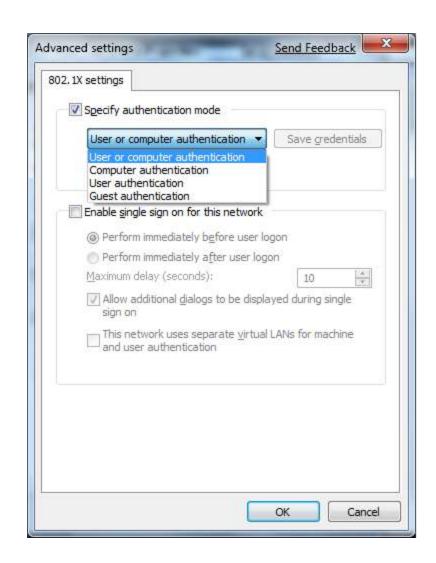
- Integral to operating system
 nothing to deploy except configuration
 No additional cost, licensed as part of OS
- Separate services for wireless and wired 802.1X


Wireless Zero Config (WZC)
Wired AutoConfig (DOT3SVC)

- Machine & User Authentication
- PEAP-MSCHAPv2,PEAP-TLS, EAP-TLS
- Recommendations

Use NDIS 6 NIC drivers

Vista SP1


Auth Fail Hot-Fix:

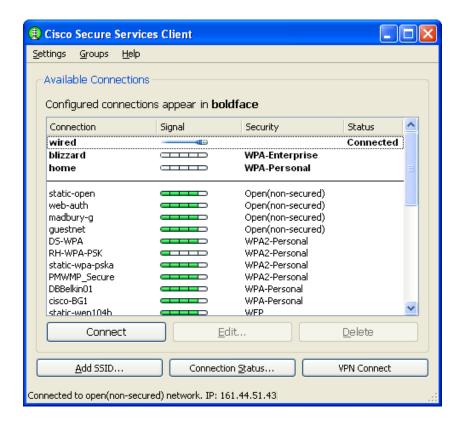
http://support.microsoft.com/default.aspx?scid=kb;en-us;957931&sd=rss&spid=11712

Windows 7 Native

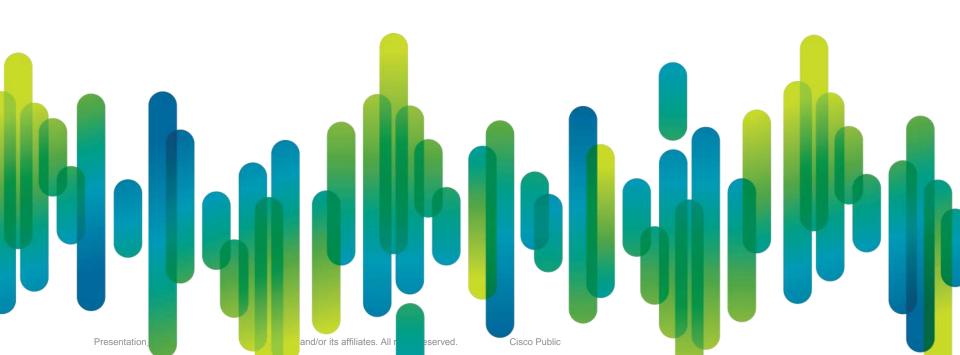
- Integral to operating system
 nothing to deploy except configuration
 No additional cost, licensed as part
 of OS
- Separate services for wireless and wired 802.1X
 - Wireless Zero Config (WZC)
 Wired AutoConfig (DOT3SVC)
- Machine & User Authentication
- PEAP-MSCHAPv2,PEAP-TLS, EAP-TLS

Mac OSX - 10.6

- Wired and wireless support
- Username / Password,
 Certificates, & Tokens
- Machine or User Authentication
- Broad EAP type support
- No up-front licensing cost
- Apple supported
- End-user focused

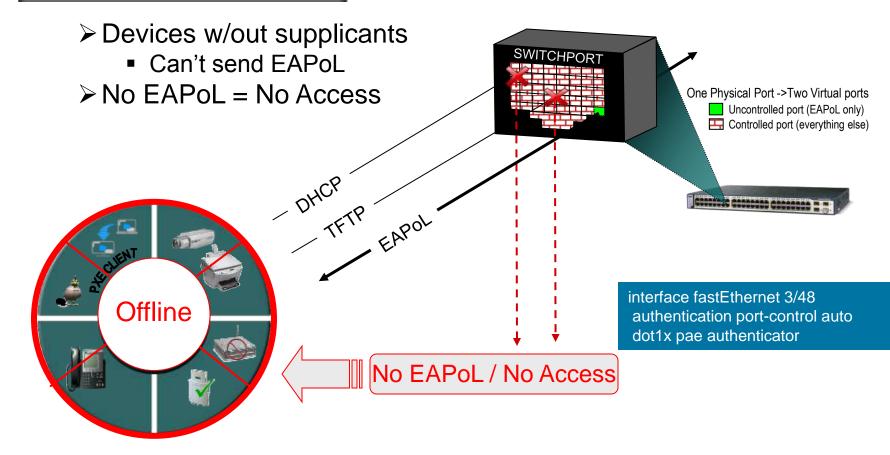

Intel Proset

- Driver Intimacy
 Adapter settings
 Radio On / Off
- No additional up-front costs
- Username / Password, Soft Certificates, Smartcards, & Tokens
- Broad EAP Type Support
- Wireless Only
- Supported by Intel
- Requires Intel NIC

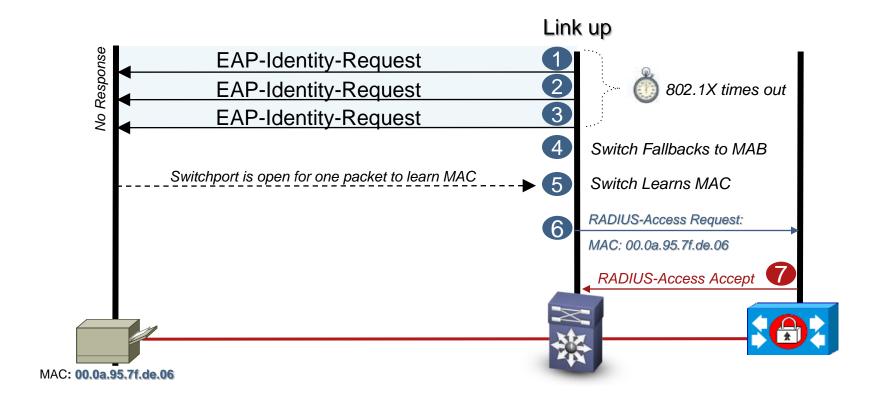


Cisco Secure Services Client

- Wired and wireless support
- Username / Password, Soft Certificates, Smartcards, & Tokens
- Machine & User Authentication
- Broad EAP type support
- Up-front licensing cost
- Cisco supported
- End-user focused
- Applications –
 Enterprise environments



Identity & Authentication Non-802.1X Capable Devices & Users



Default Security: Consequences

Default 802.1X Challenge

MAC Authentication Bypass (MAB) for Non-802.1X Devices

802.1X with MAB

Deployment Considerations

MAB enables differentiated access control

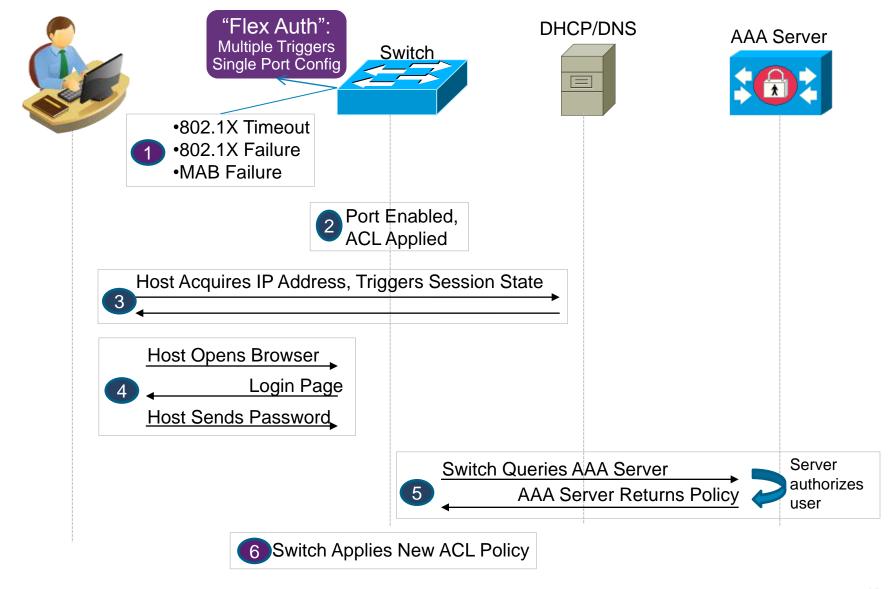
MAB leverages centralized policy on AAA server

Dependency on 802.1X timeout -> delayed network access

- Default timeout is 30 seconds with three retries (90 seconds total)
- 90 seconds > DHCP timeout.

MAB requires a database of known MAC addresses

Considerations: MAC Databases


Method	What is it?	Advantages	Problems	Use Case
OUI Wildcards	Use 3-Byte Identifier	Easy to add lots of devices	No granularity	'Add all HP printers'
ACS	Local database with Radius Server	Readily available	No central repository for all IDs	'Radius only'
AD	Central Directory Service	Central repository	Should have support for [ieee802] object, password complexity	'All in one'
NAC Profiler	Automatic building of MAC DB	Automated	Need certain methods to make it reliably identify devices	'handle unknown devices'
LDAP	Central directory	Standards based	Manually populated and maintained	'leverage existing db'

DEMO Time

MAB

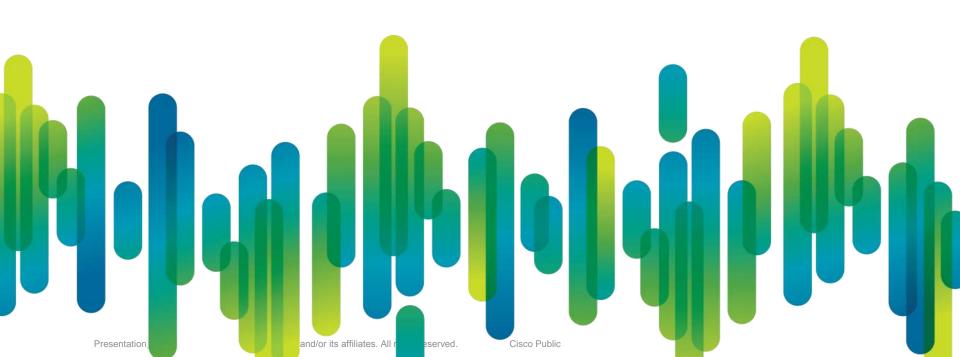
Web Authentication for non-802.1X User

802.1X with Web-Auth

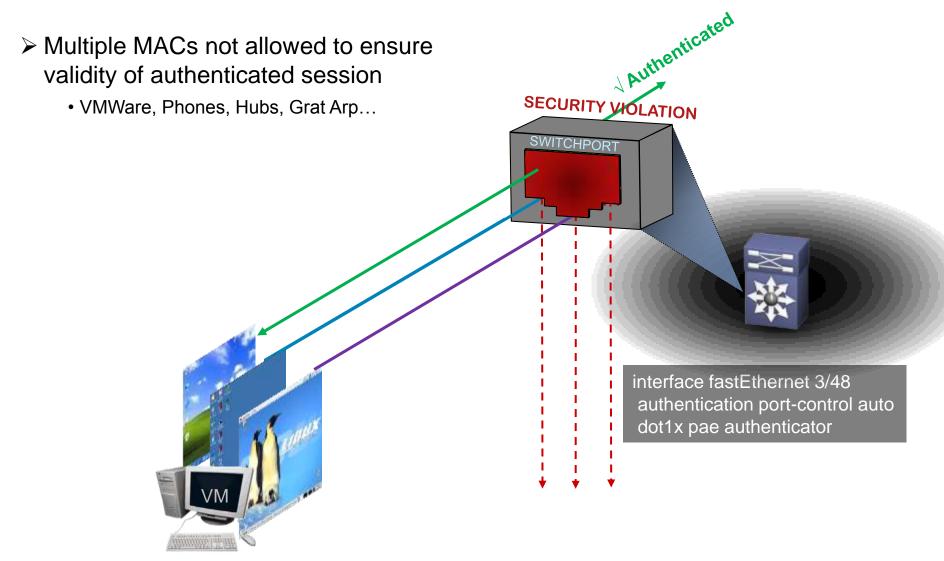
Deployment Considerations

- Web-Auth is only for users (not devices)
 - browser required
 - manual entry of username/password

- Web-Auth can be a fallback from 802.1X or MAB.
- Web-Auth and Guest VLAN* are mutually exclusive
- Web-Auth supports ACL authorization only
- Web-Auth behind an IP Phone requires Multi-Domain Authentication* (MDA)


^{*} To be discussed in later sections

DEMO Time


Web-Auth


Identity & Authentication Further Restrictions

Default Security: More Consequences

Phase 0: Pre-Deployment

Introduction to ACME Corp.

- Fictional Company, publishing house.
- Employees, free lancers, guests are using the corporate network infrastructure.
- The same infrastructure is used for other devices as well.
- 'One network to support them all.'
- No access control in place as of today, everybody with physical access can connect.

The CIO decided to limit access. Only known devices must be allowed on the network

ACME's Business Environment

Frank Lee Guest

GLOBAL WORK FORCE

Employees, Contractors, Phones, Printers

Wireline

Employe

SENSITIVE RESOURCES

Network, Devices & Applications

11am

MULTIPLE ACCESS METHODS

From different devices, location & time

Remote Access

Sergei Balazov

Bill Graves Employee R&D Wireless

Francois Didier Consultant HQ - Strategy Remote Access

ALL NEED CONTROLLING

Managed asset Finance dept. 12:00pm Agentless asset
MAC: B2 CF 81 A4 02 D7

ACME's Goals

The Mission:

- Prevent Anonymous / Unauthorized Access
- Increase Network Visibility
- Solution deployment should be transparent to end users

Employee end-user behavior should not change.

Legacy devices must not be locked out.

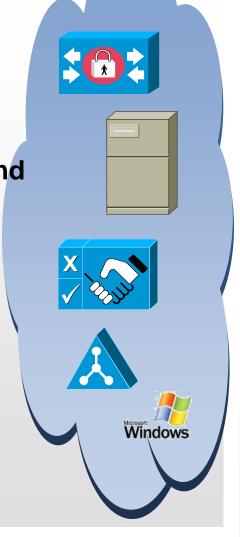
Best authentication method based on device capabilities should be chosen.

ACME's Environment: Devices

- PC devices are primarily running in a Microsoft Windows environment.
- IP Telephony is Cisco, 50% are 802.1X ready and support EAP-TLS / certificate based authentication. No Certs deployed so far (MICs only).
- Printers are not-802.1X capable, must be authenticated via their MAC address.
- All sorts of other (legacy) devices from freelancers (Macs, Linux machines, ...) and generic devices (e.g. building control).

ACME's Environment: Network

- ACME recently did a refresh on their access network.
- Devices are up-to-date and are running latest available code.
- Devices are configured according to L2 best practice (DHCP snooping, DAI, VLAN != VVLAN != Management VLAN).
- For conference rooms, only corporate owned and authorized devices may be cascaded to provide additional ports (Extended Edge concept).


ACME's Environment: Back-End

Windows 2008 Active Directory

Environment managed via AD Group Policy Objects (GPOs)

GPOs enabled centralized management & distribution of policy for users, computers and other objects in the directory.

- Certificate Infrastructure is in place,
 Microsoft CA running on AD.
- ACS 5.1 will be used to provide AAA services.

ACME's Environment: Credentials

- Corporate machines are registered with the Windows domain
- Computers & Users log in with Name and Password to the domain
- Additional authentication is enforced at the application layer
- No authentication at all for all other devices

Considerations

- What Authentication Method(s) should be used?
- Which Operating Systems are to be supported?
- Where are Credentials stored?

One Store vs. Many Stores

How to Build and Manage a MAC Database?

Considerations: Authentication Method

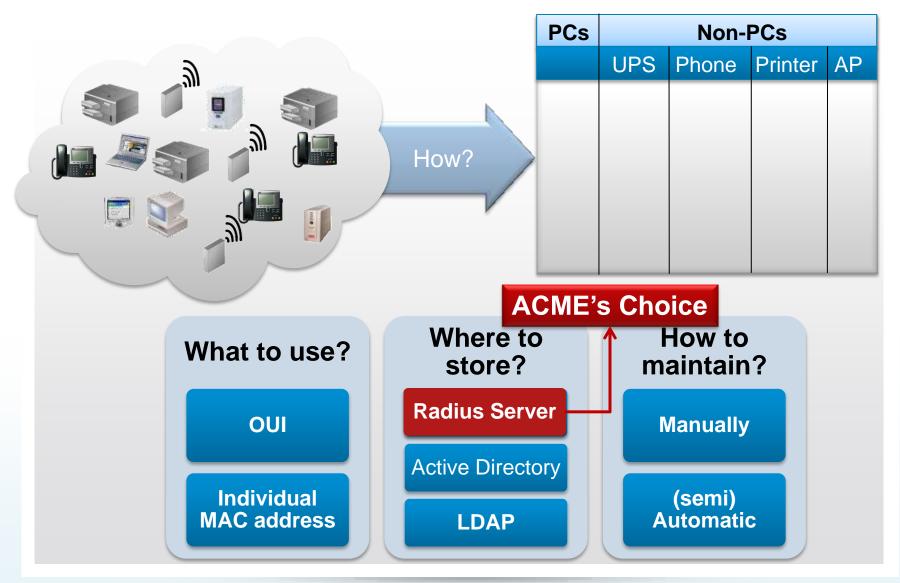
Method	What's required?	Pros	Cons
802.1X	Supplicant Credentials	Highest Security	Supplicant may not be available on every platform
MAB	MAC address database	Works for all devices	Weak, can be easily snooped, DB needs to be created and maintained
Web-Auth	Portal (on switches or on dedicated NGS)	No supplicant needed, every device w/ browser can be used	Relies on initial connectivity, VLAN / IP address change after authentication is problematic

Further Considerations for 802.1X Authentication: EAP Methods

Method	What's required?	Pros	Cons
EAP-MD5	Username, Password	Most devices with 802.1X support do at least EAP- MD5	Offline dictionary attack, one-way authentication
EAP-TLS	Certificate distribution	Most secure method	Certificate cost, distribution, renewal
PEAP	Username, Password	Readily available in Windows environments	Single factor authentication

Chosen by ACME for operational efficiency

Considerations: Operating Systems



Considerations: Operating Systems

OS (corporate asset)	Supplicant	Methods supported	Remark
Windows XP and newer	Built-in or 3 rd party	MD5, TLS, PEAP	No MD5 w/ Vista and newer
Older Windows	No support	MAB or WebAuth	
Apple Mac OS X	Built-in	TTLS, TLS, FAST, PEAP, LEAP, MD5	
802.1X-capable Cisco phones	Built-in	MD5, FAST, TLS	
Other devices	various	various	various

OS (non- corporate asset)	Supplicant	Methods supported	Remark
All	n/a	MAB or WebAuth	Guest Access

Considerations: MAC Databases

ACME's Starting Point

CREDENTIAL STORE

ACME WILL USE ACTIVE DIRECTORY

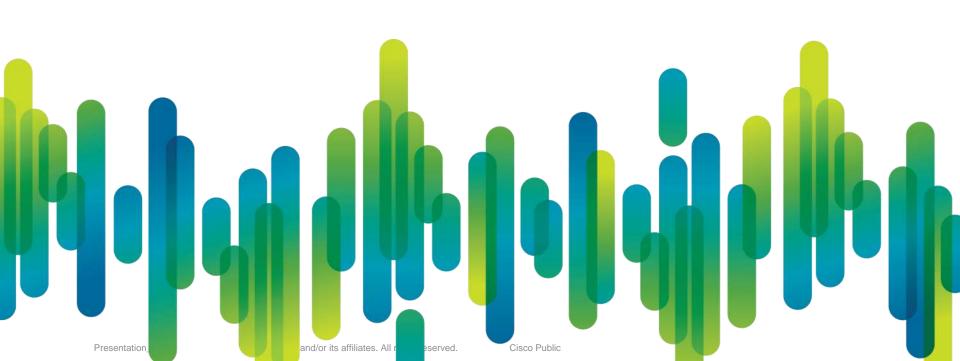
EAP-TYPE
USE PEAP WHEREVER POSSIBLE

UNMANAGED DEVICES
EVERYTHING ELSE USES MAB AND WEBAUTH

GUEST ACCESS

LEVERAGE NAC GUEST SERVER FOR GUESTS

ACME Summary & Goal


- Enforce admission control to wired network
- Use central identity store, Active Directory

- Control Plane is Radius
- Provide coherent solution for all devices

KEEP THE INSIDERS IN AND THE OUTSIDERS OUT!

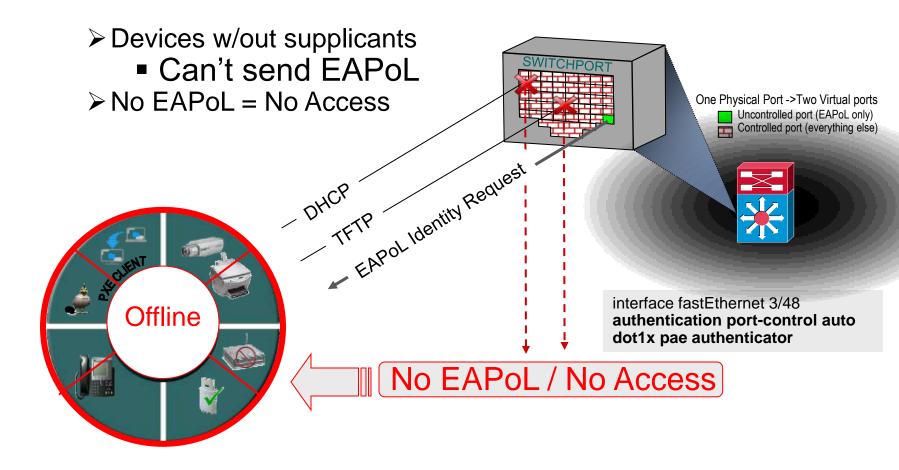
Phase 1: Monitor Mode

ACME's Goals: Phase 1

Gain visibility of what's currently on the network

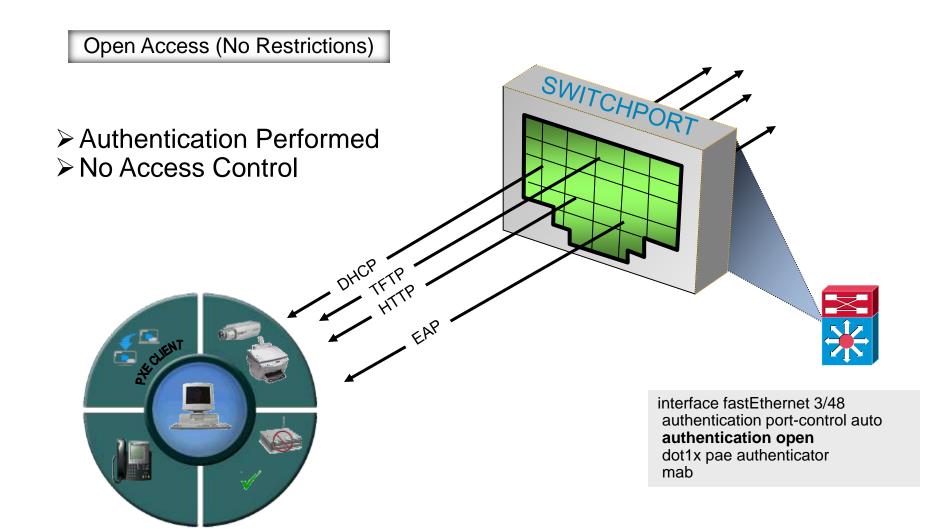
Managed Assets

Agentless Assets

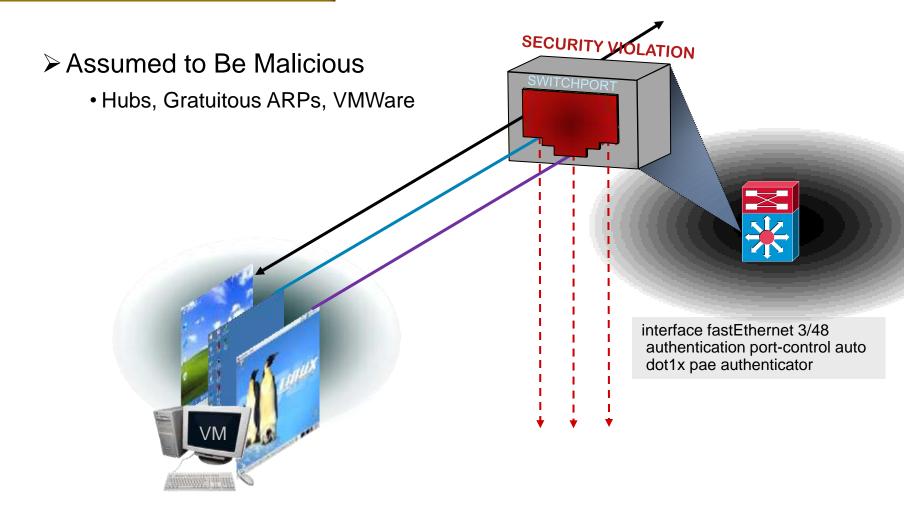

Unknown Devices

- Validate components are functioning as expected
- Identify non-functioning components and correct
- Be Transparent to Users and Current Network

ACME's Goals Can Be Met With Monitor Mode

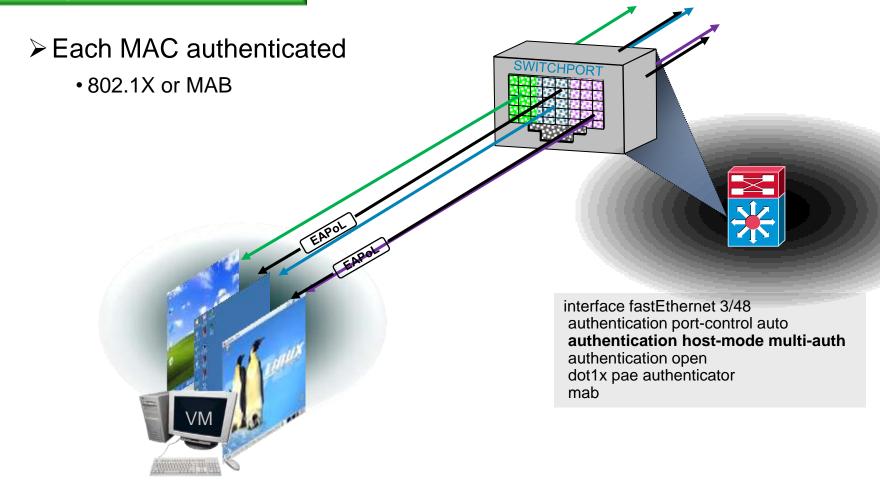

Default Security: Consequences

Default 802.1X Challenge


Changing the Default Authorization:

"Open Access"

Default Security: Consequences


Multiple MACs per Port

Modifying the Default Security

"Multi-Auth"

Enabling Monitor Mode – RADIUS Server

Configure PKI and Identity Servers

Create 802.1X & MAB Policies

- Every user in AD is permitted
- Separate Rules can be used for reporting

Enabling Monitor Mode – Managed Assets

Roll out Root CA Cert to Managed Assets via GPO

Activate PEAP configuration for User authentication via GPO

Activate Wired Auth Service on Windows machines via GPO

All managed assets should be provisioned before the switches are configured for access control

DEMO Time

Managing 802.1X Parameters with Active Directory GPOs

Phased Rollout

- Deploy supplicant configuration components first
- Configure RADIUS server second
- Deploy switches third
- Possibly start with one floor at a time
- Validating via case load that monitor mode is working as expected
- After successful floor rollouts expand to multiple floors or a building at a time

Monitor Mode: Monitoring

Monitor Mode – Monitoring and Reporting

Monitor the network, see who's on, address future connectivity problems by installing supplicants and credentials, creating MAB database

TO DO Before implementing access control:

- Confirm that all these should be on network
- Install supplicants on X, Y, Z clients
- Upgrade credentials on failed 802.1X clients
- Update MAC database with failed MABs

RADIUS accounting logs provide visibility:

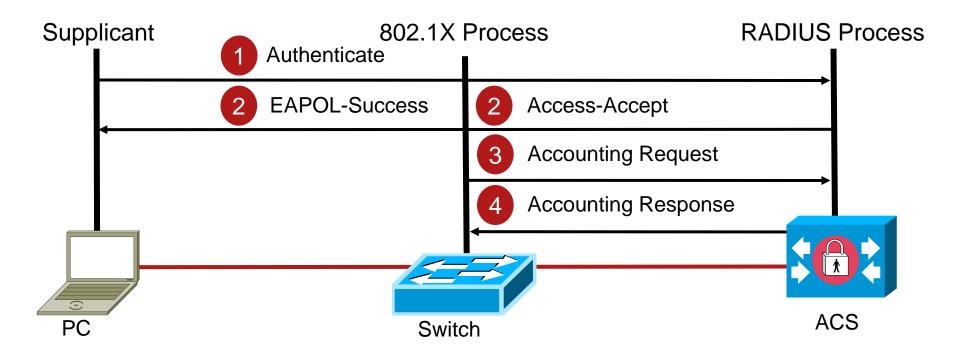
- Passed/Failed 802.1X/EAP attempts
 - List of valid dot1x capable
 - List of non-dotx capable
- Passed/Failed MAB attempts
 - List of Valid MACs
 - List of Invalid or unknown MACs


RADIUS Authentication

ACME authentications can be monitored

View Trends of Passed (should be high)

View Trends of Failures (should be low)


View Trends of Unknown MAC Addresses (should start high and lower as MAC Addresses are added to the database)

Active Monitoring

- Network Visibility is not just about passed/failed authentications
- The RADIUS server can have a session directory provided by RADIUS accounting.
- This provides ACME with a view of all active sessions as the session enter and leave the network
- This information can be used along with other security information for better incident response

802.1X with RADIUS Accounting

802.1X with RADIUS Accounting

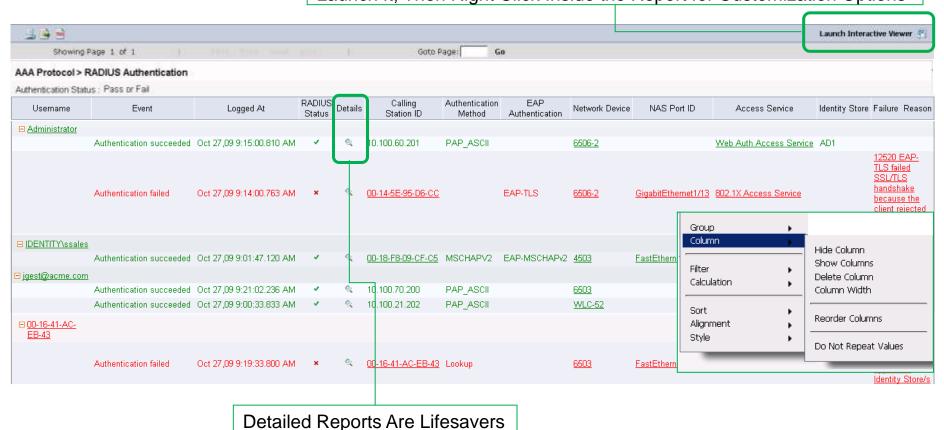
 Similar to other accounting and tracking mechanisms that already exist using RADIUS

Can now be done through 802.1X

- Increases network session awareness
- Provide information into a management infrastructure about who logs in, session duration, support basic billing usage reporting, etc.
- Provides a means to map the information of authenticated

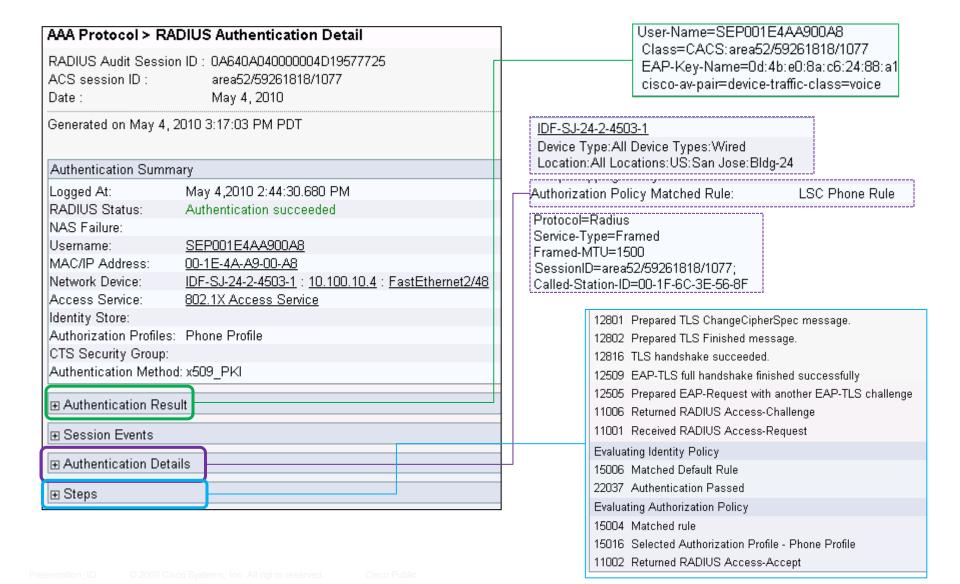
IOS
aaa accounting dot1x default start-stop group radius

Simple Homegrown Tools


- Switches logs all passed/failed sessions via syslog
- RADIUS servers typically all log information in plain text
- Relatively easy to run scripts against this information to create monitoring views
- Scripts can create database of mac addresses seen from the network

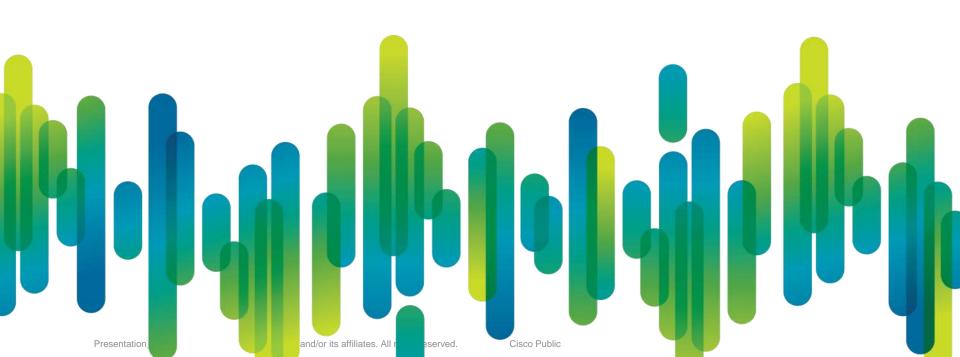
Simple Homegrown Tools

Timestamp ?	Auth	MAC ?	MT-0800 (PST) Username ?	Group ?	NDG ?	NAD ?	Port ?	AFC ?	NAP ?	Domain ?	ACS ?
2008-02-27 09:43:46 PST	0		@ azbycx	Default Group			@ azbycx		(Default)		
2008-02-27 09:41:28 PST	0		Coritical_test	maintenance			© critical_test		(Default)		16 20
2008-02-27 09:40:13 PST	3	00-1B-		Default Group			50107		802.1x		
2008-02-27 09:38:31 PST	0	00-15-	2	Default Group			50119		802.1x		in within alex
2008-02-27 09:38:09 PST	0	9 00-18-	? o	МАВ			Eth2/3 (131)		МАВ		E
2008-02-27 08:21:57 PST	9	00-1A-		Default Group			50107		802.1x		id alaba aiat
2008-02-27 08:21:49 PST	8	00-1A-6B-69-A9-AC		Default Group			50107	External DB user invalid or ba	802.1x		-
2008-02-27 08:20:20 PST	9		@ azbycx	Default Group	-		azbycx		(Default)		L L # - L - L
008-02-27 8:16:02 PST	0		@ azbycx	Default Group			@ azbycx		(Default)		
008-02-27 8:14:04 PST	0	00-1A-	k k	Default Group			50120		dot1x-2ndfli	r l	
008-02-27 8:10:32 PST	0		@ azbycx	Default Group			azbycx		(Default)		ESEM STARE A
008-02-27 8:10:04 PST	9	9 00-1E-	*	Default Group			50120		802.1x		
008-02-27 8:07:38 PST	0	00-30-	Q 00	mda_voice			50103		МАВ		
2008-02-27 08:07:38 PST	0	00-03-	Q 00	mda_voice			50107		MAB		


Monitoring With ACS 5.1

Tip: Interactive Viewer Is Your Friend
Launch It, Then Right Click Inside the Report for Customization Options

80


ACS 5.1 Details Report

Monitor Mode: Network Access Table

Endpoints	Authentication Status	Authorization	Implementation
All (including PXE)	Pre-Auth	Enterprise Access	Open authentication
Employees	802.1X Success	Enterprise Access	Open authentication
Corporate Asset	MAB Success	Enterprise Access	Open authentication
Phones	802.1X or MAB Success	Voice Access	Open authentication
Employees	802.1X Fail -> MAB	Enterprise Access	Open authentication
Sponsored Guest	802.1X Fail/Timeout -> MAB Fail	Enterprise Access	Open authentication
Unknown / Unauthorized	802.1X Fail/Timeout -> MAB Fail	Enterprise Access	Open authentication
All	None (AAA server down)	Enterprise Access	Open authentication

Low Impact Mode

ACME's Goals: Phase 2

- Maintain Visibility
- Control Access to Sensitive Assets
- Preserve Network Access for Managed Assets
 Special Case: PXE boot
- Preserve Current Network Architecture
 No changes to VLAN infrastructure

ACME's Goals Can Be Met With Low Impact Mode

Access Control & Clientless Devices

The Timing Problem With MAB

- MAB depends on 802.1X timeout
- Many devices are time-sensitive
- DHCP is especially finicky

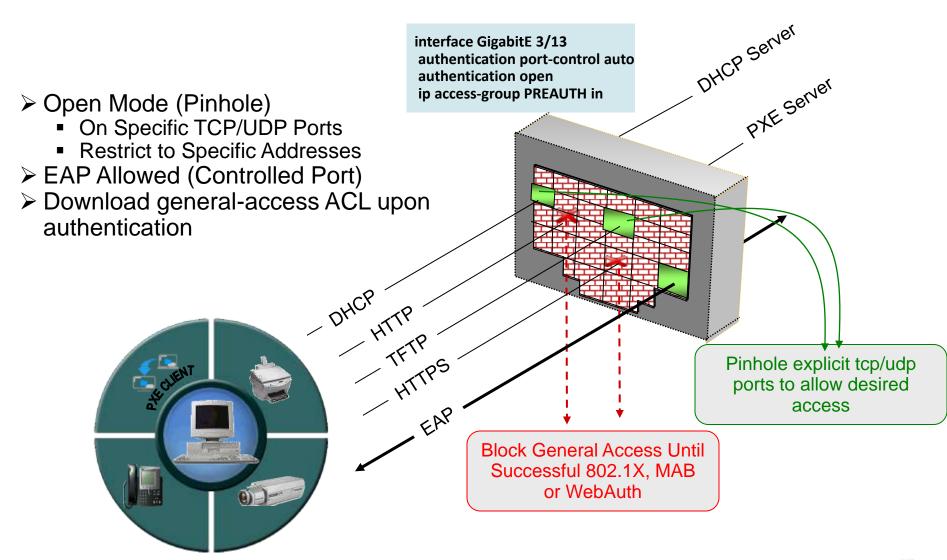
The Low Impact Solution

- Provide access to time-critical services before authentication
- Continue to restrict access to other services until after authentication

1

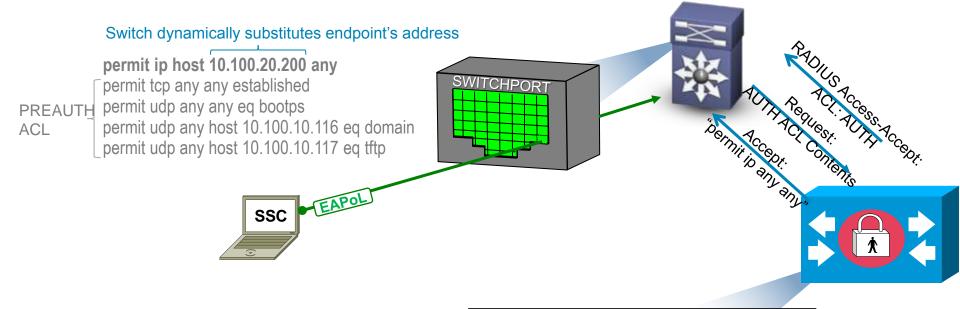
ACME's Time-Critical Services

- DHCP, DNS, TFTP
- This is enough for PXE devices to boot before MAB completes

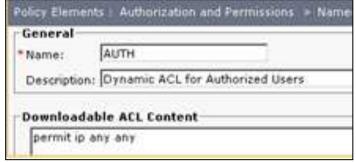


Low Impact: Network Access Table

Endpoints	Authentication Status	Authorization	Implementation
All (including PXE)	Pre-Auth	Limited Access	
Employees	802.1X Success	Enterprise Access	
Corporate Asset	MAB Success	Enterprise Access	
Phones	802.1X or MAB Success	Voice Access	
Employees	802.1X Fail -> MAB or Web-Auth Success	Enterprise Access	
Sponsored Guest	802.1X Fail/Timeout -> MAB Fail -> Web-Auth Success	Limited + Internet Access	
Unknown / Unauthorized	802.1X Fail/Timeout -> MAB Fail -> Web-Auth Fail	Limited Access	
All	None (AAA server down)	Limited Access	


Low Impact Implementation

Limited ("Selectively Open") Access

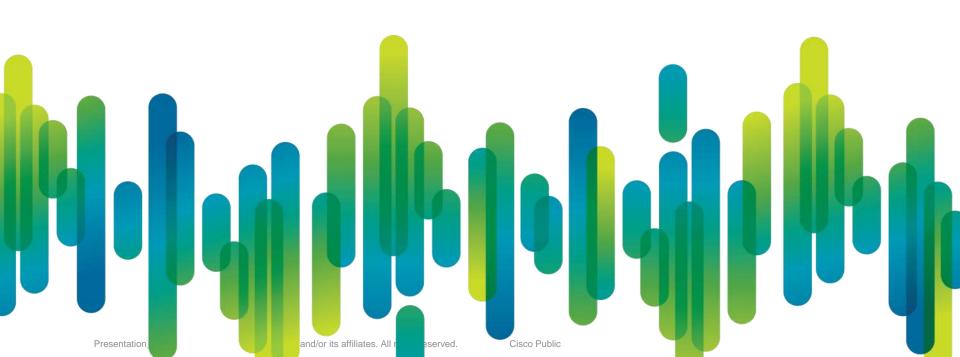


dACLs Open Port After Authentication

Configure downloadable ACLs (dACL) for authenticated users

- Contents of dACL are arbitrary.
- Can have as many unique dACLs are there are user permission groups
- Same principles as pre-auth port ACL

Low Impact: Network Access Table


Endpoints	Authentication Status	Authorization	Implementation	
All (including PXE)	Pre-Auth	Limited Access	Pre-Auth ACL	
Employees	802.1X Success	Enterprise Access	Permit-Any dACL	
Corporate Asset	MAB Success	Enterprise Access	Permit-Any dACL	
Phones	802.1X or MAB Success	Voice Access		
Employees	802.1X Fail -> MAB or Web-Auth Success	Enterprise Access		
Sponsored Guest	802.1X Fail/Timeout -> MAB Fail -> Web-Auth Success	Limited + Internet Access		
Unknown / Unauthorized	802.1X Fail/Timeout -> MAB Fail -> Web-Auth Fail	Limited Access	Pre-Auth ACL	
All	None (AAA server down)	Limited Access	Pre-Auth ACL	

DEMO Time

PXE boot and Enterprise Access

Low Impact Mode: Flex Auth

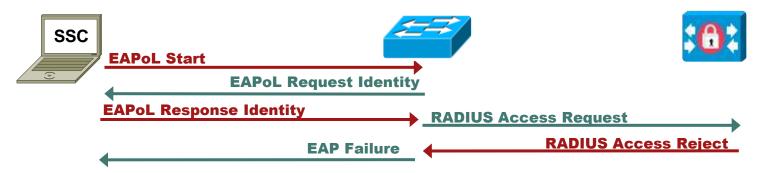
Flexible Authentication: "Flex-Auth"

One Configuration Fits Most

Configurable behavior after 802.1X timeout:

1) Next-Method

Configurable behavior after 802.1X failure:

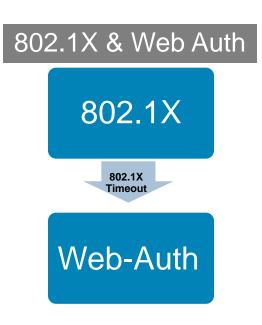

Flex-Auth enables a single configuration for most use cases

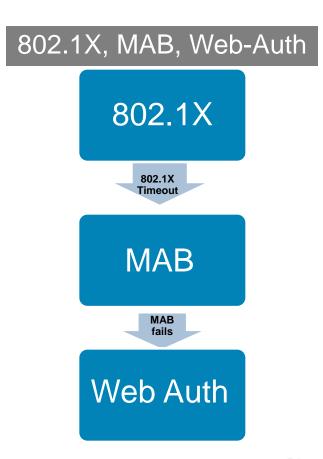
Configurable order and priority of authentication methods

Configurable behavior before & after AAA server dies

802.1X Failure vs. 802.1X Timeout

An 802.1X **failure** occurs when the AAA server rejects the request:


A timeout occurs when an endpoint can't speak 802.1X:



Default Behavior on 802.1X Timeout

 After 802.1X times out, port automatically falls back to "next-method" if another method is configured.

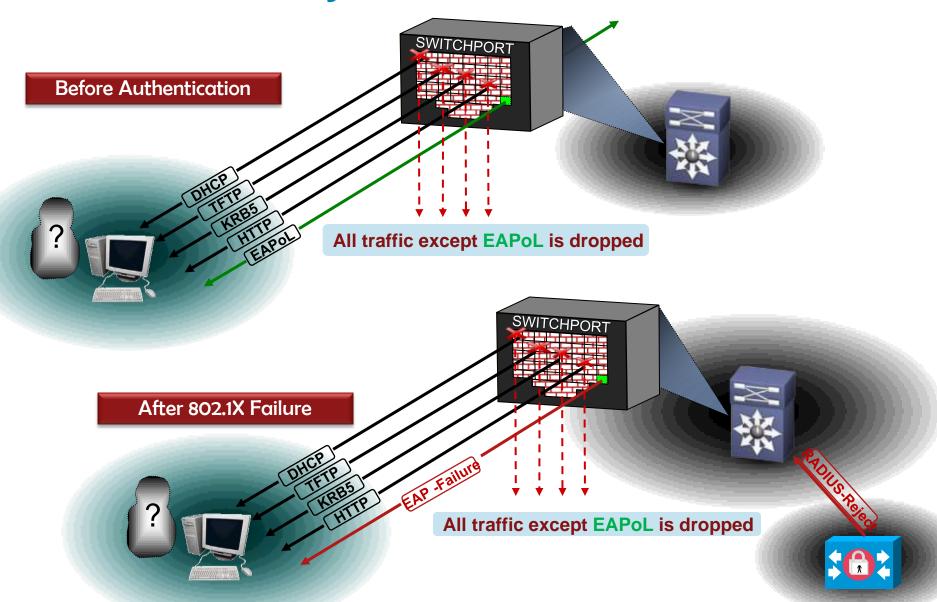
Flex-Auth for 802.1X Failures

Low Impact Mode

Configurable behavior after 802.1X timeout :

1) Next-Method

Configurable behavior after 802.1X failure:


1) Next-Method

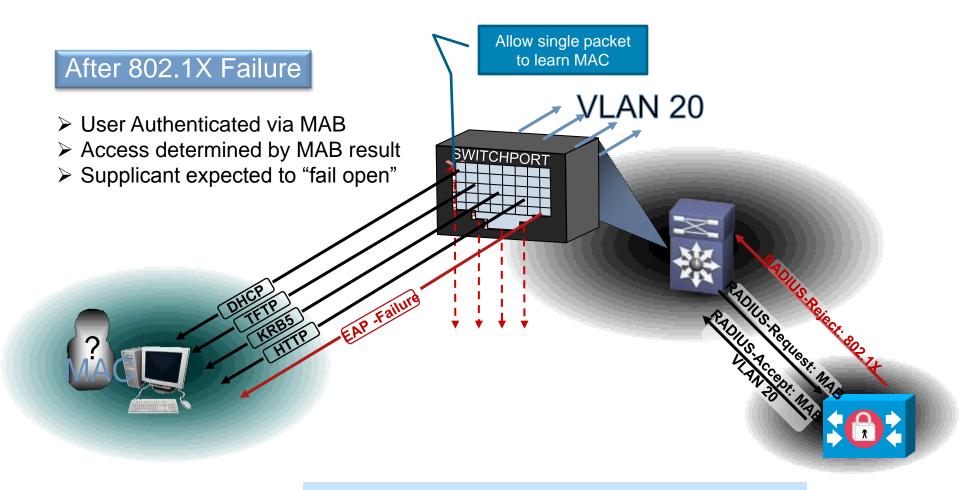
Flex-Auth enables a single configuration for most use cases

Configurable order and priority of authentication methods

Configurable behavior before & after AAA server dies

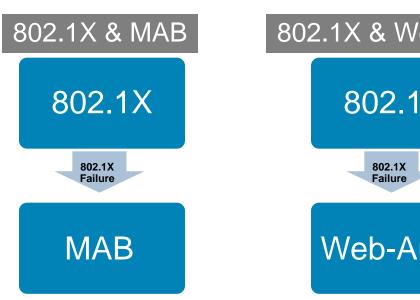
Default Security After 802.1X Failure

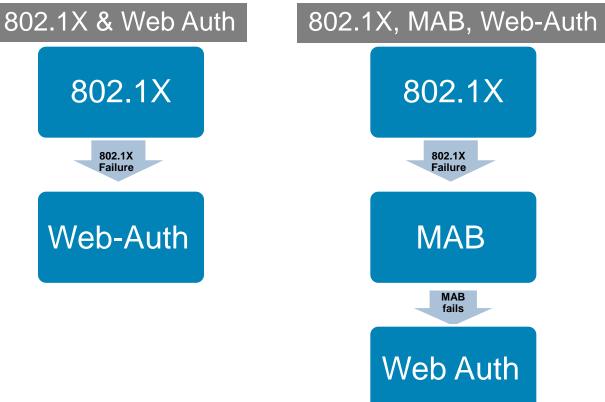
Why Provide Access to Devices that Fail?


Employees' credentials expire or get entered incorrectly

As 802.1X becomes more prevalent, more guests will fail auth because they have 802.1X enabled by default.

Many enterprises require guests and failed corporate assets get conditional access to the network


Failed Auth with Flex-auth: Next-method



6506-2(config-if)#authentication event fail action next method 6506-2(config-if)#authentication order dot1x mab

802.1X Failure with Next-Method

When port is configured to fail to next method, port falls back to "next-method" in the following order.

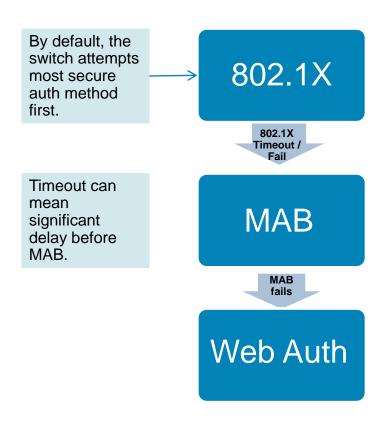
Flex-Auth Order & Priority

Configurable behavior after 802.1X timeout :

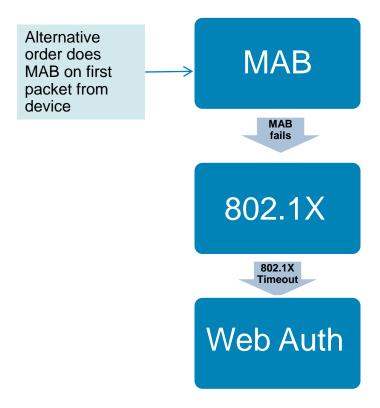
1) Next-Method

Configurable behavior after 802.1X failure:

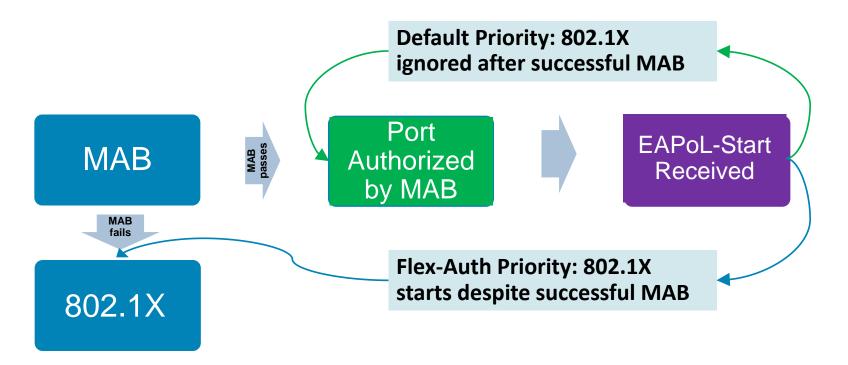
1) Next-Method


Flex-Auth enables a single configuration for most use cases

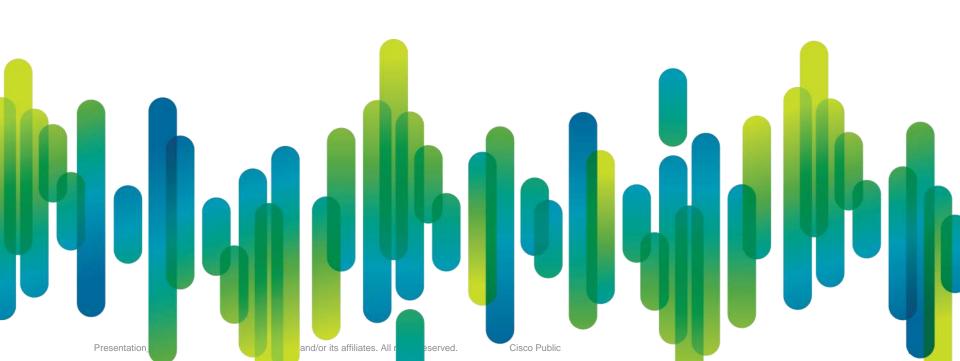
Configurable order and priority of authentication methods


Configurable behavior before & after AAA server dies

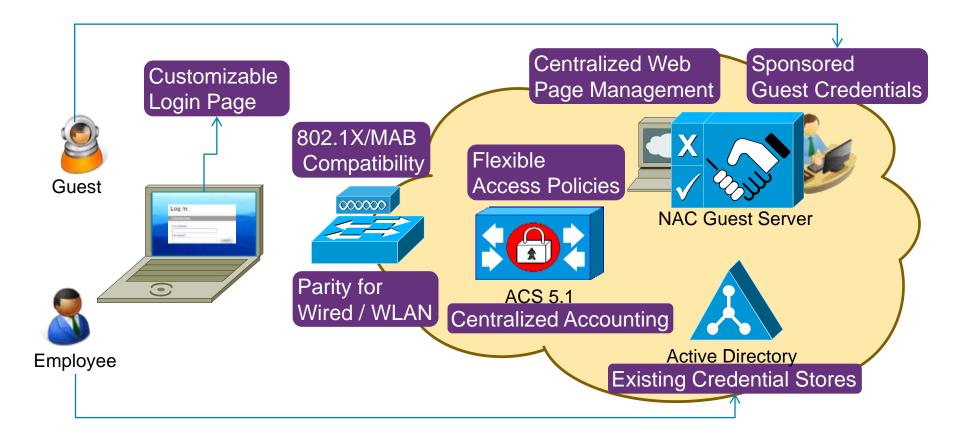
Flex-Auth Sequencing


Default Order: 802.1X First

Flex-Auth Order: MAB First



Flex-Auth Order with Flex-Auth Priority



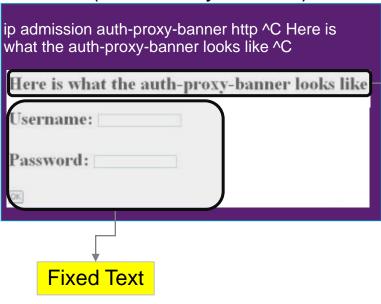
- Priority determines which method can preempt other methods.
- By default, method sequence determines priority (first method has highest priority).
- If MAB has priority, EAPoL-Starts will be ignored if MAB passes.

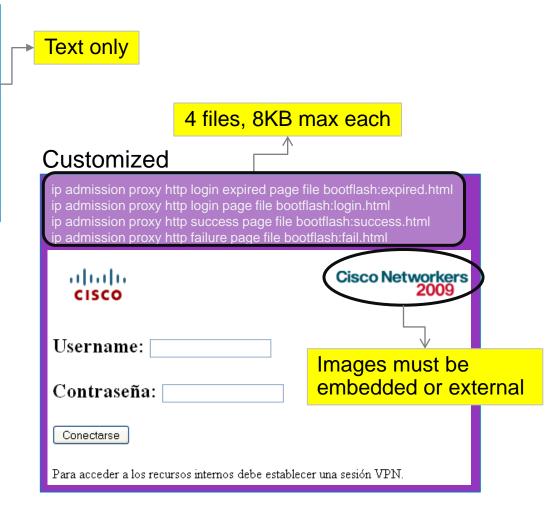
Low Impact Mode: Web Auth

What ACME Expects for Web Auth

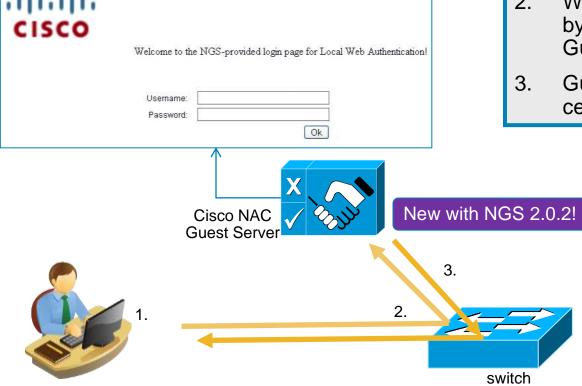
Integrated Local Web Authentication

Introducing...Web-Auth's New Best Friend

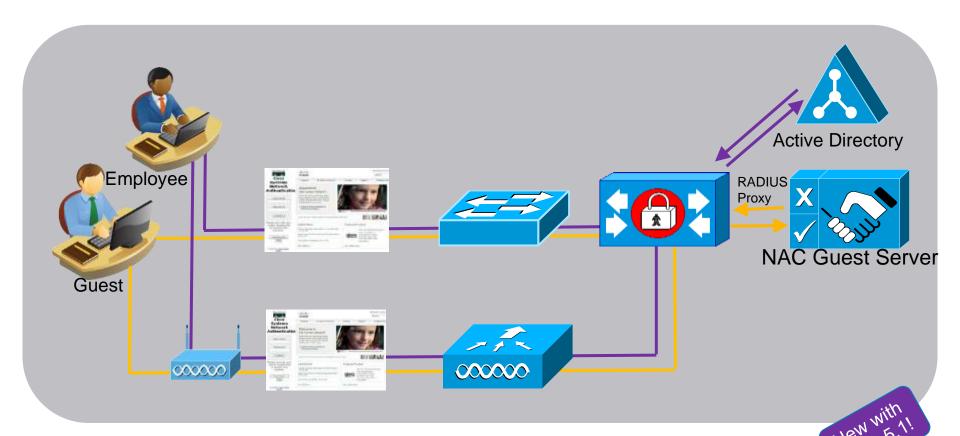



- Multi-Function Standalone Appliance
- Customizable Hotspot Hosting
- Sponsored Guest Access Provisioning, Verification, Management

Product Bulletin: http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5707/ps8418/ps6128/product_data_sheet0900aecd806e98c9.html


Basic Wired: Distributed Login Pages

Default (Auth-Proxy Banner)



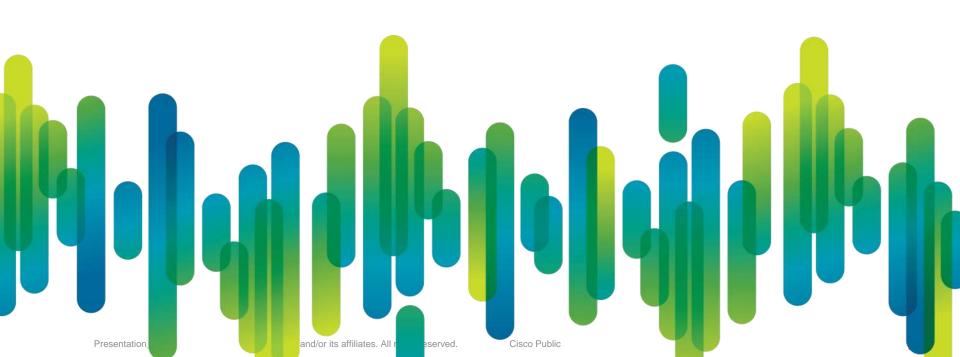
Enhanced Web Auth – Centralized Login Page

- 1. Guest opens Web browser
- 2. Web traffic is intercepted by switch and redirected to Guest Server.
- 3. Guest Server returns centralized login page

Web Authentication Can Be Used For Guests and/or Employees

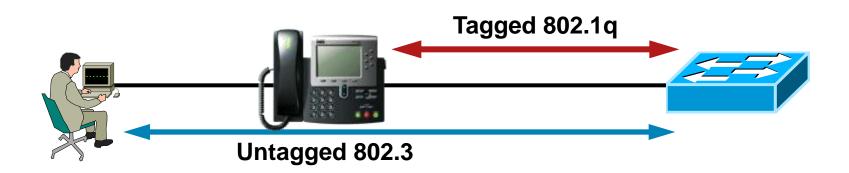
- ACS can use RADIUS proxy to validate sponsored guest credentials on NGS
- ACS can query other ID stores (like AD) to validate employee credentials
- ACS policy can assign different levels of access to Guest and Employee

Low Impact: Network Access Table


Endpoints	Authentication Status	Authorization	Implementation
All (including PXE)	Pre-Auth	Limited Access	Pre-Auth ACL
Employees	802.1X Success	Enterprise Access	Permit-Any dACL
Corporate Asset	MAB Success	Enterprise Access	Permit-Any dACL
Phones	802.1X or MAB Success	Voice Access	
Employees	802.1X Fail -> MAB or Web-Auth Success	Enterprise Access	Permit-Any dACL
Sponsored Guest	802.1X Fail/Timeout -> MAB Fail -> Web-Auth Success	Limited + Internet Access	Permit-Internet dACL
Unknown / Unauthorized	802.1X Fail/Timeout -> MAB Fail -> Web-Auth Fail	Limited Access	Pre-Auth ACL
All	None (AAA server down)	Limited Access	Pre-Auth ACL

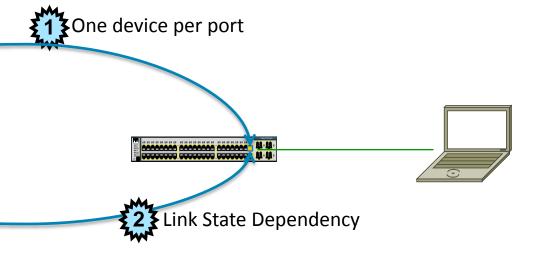
DEMO Time

Next-Method for 802.1X Timeout & Fail


Low Impact Mode: IP Telephony

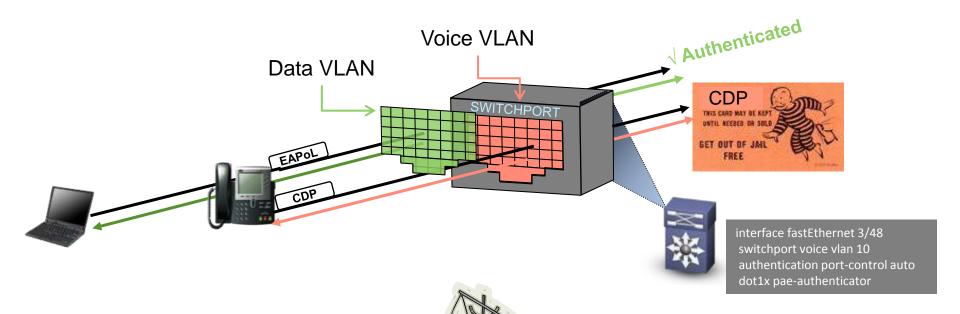
802.1X & IPT: A Special Case

Voice Ports


- With Voice Ports, a port can belong to two VLANs, while still allowing the separation of voice/data traffic while enabling you to configure 802.1X
- An access port able to handle two VLANs
 Native or Port VLAN Identifier (PVID) / Authenticated by 802.1X
 Auxiliary or Voice VLAN Identifier (VVID) / "Authenticated" by CDP
- Hardware set to dot1q trunk

IPT & 802.1X: Fundamental Challenges

"The operation of Port Access Control assumes that the Ports on which it operate offer a point-to-point connection between a single Supplicant and a single Authenticator. It is this assumption that allows the authentication decision to be made on a per-Port basis."


IEEE 802.1X rev 2004

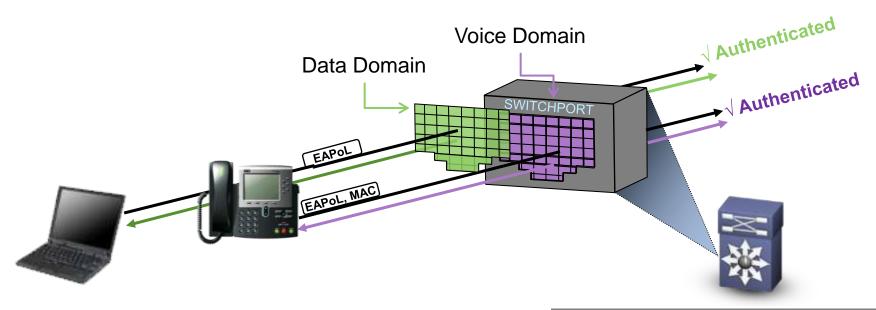
IPT Breaks the Point-to-Point Model

First Solution: CDP Bypass

Access to voice VLAN after phone sends CDP CDP-capable hackers get full access, too. Default behavior: Cisco IP Phones get access No visibility, No access control

Works for all Cisco phone models

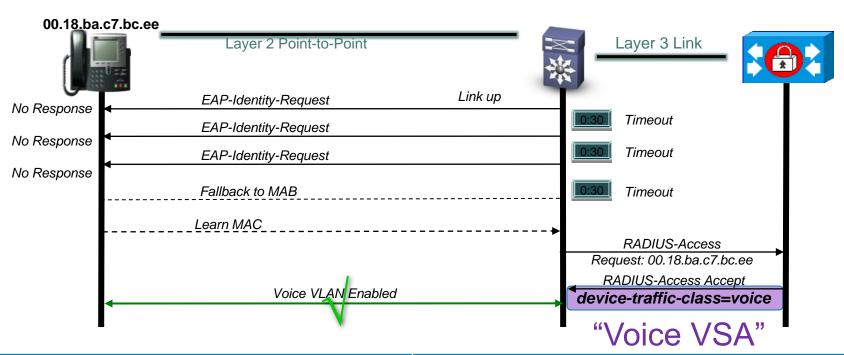
Incompatible with dynamic VVID,
downloadable ACLs (dACLs), PC Web Auth


Deployment Considerations

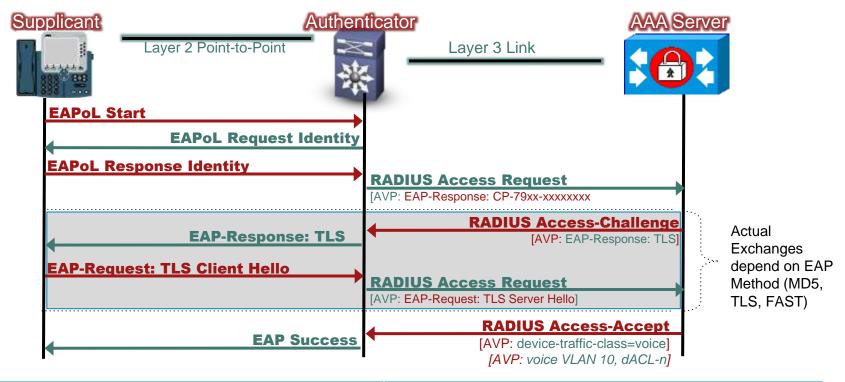
if voice VLAN configured

Benefits

Second Solution: Multi-Domain Authentication (MDA) Host Mode


Single device per port Single device per domain per port

- Phones and PCs use 802.1X or MAB
- MDA is a subset of Multi-Auth


interface fastEthernet 3/48
authentication host-mode multi-domain

MDA with MAC Authentication Bypass (MAB)

Benefits	Deployment Considerations
No client, no credential needed -> Works for all Cisco phone models	Dependency on AAA server
Enables visibility, access control	Must create & maintain phone MAC database
Compatible with 802.1X features	Default 802.1X timeout = 90 seconds latency (mitigated by Low Impact Mode)

MDA with 802.1X

Benefits	Deployment Considerations
Strong Authentication with Minimal Delay	Choice of EAP Method impacts deployability
<u>Can</u> be deployed without touching the phone or creating a database.	Requires: 7970G, 79x1, 79x2, 79x5 with X.509 cert support & firmware 8.5(2)
Compatible with 802.1X features	AAA server dependency

MDA in Action

PC
Authenticated
by 802.1X

Phone authenticated by MAB

3750-1 (config-if) #do sh dot1x int G1/0/5 details <...> Dot1x Authenticator Client List Domain = DATASupplicant = 0014.5e42.66dfAuth SM State = AUTHENTICATED Auth BEND SM State = IDLE Port Status = AUTHORIZED Authentication Method = Dot1xAuthorized By = Authentication Serve Domain = VOICE = 0016.9dc3.08b8Supplicant Auth SM State = AUTHENTICATED

= IDLE

= MAB

= AUTHORIZED

= Authentication Server

- Either 802.1X or MAB for phone
- Any combination of 802.1X, MAB, Guest-VLAN, Auth-Fail-VLAN, IAB for PC

Auth BEND SM State

Authentication Method

Port Status

Authorized By

Summary: Multiple Hosts per Port

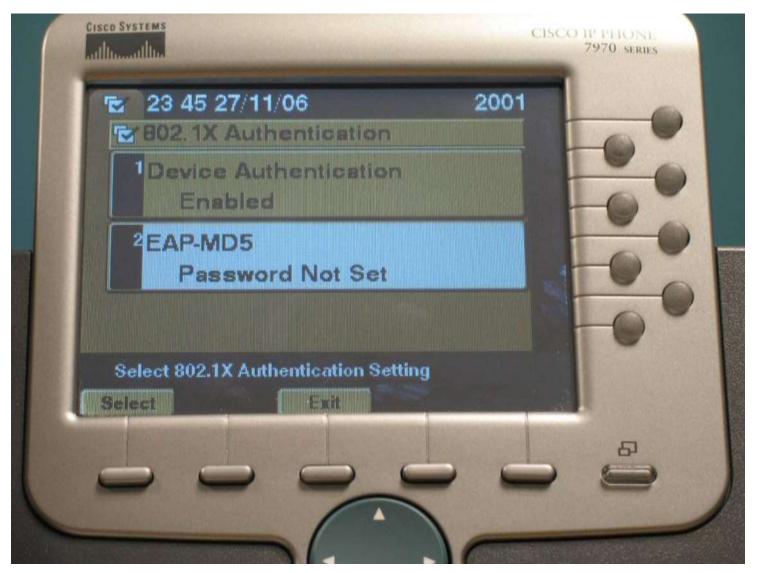
Host Mode	Enforcement	Deployment Considerations
Single	Single mac address per port	 Second mac address triggers a security violation VMs on the host must share the same mac address. CDP Bypass is the only IPT solution.
Multi-Domain Auth (MDA)	One Voice Device + One Data Device per port	 Same as single host mode except phone authenticates Supports third party phones
Multi-Auth	Superset of MDA with multiple Data Devices per port	 Authenticates every mac address in the data domain. VMs on the host may use different mac addresses. One VLAN (default port VLAN) for all devices on the port
Multi-Host	One authenticated device allows any number of subsequent mac addresses.	 Not recommended VMs on the host may use different mac addresses. CDP Bypass is the only IPT solution.

Low Impact: Network Access Table

Е	ndpoints	Authentication Status	Authorization	Implementation
Д	II (including PXE)	Pre-Auth	Limited Access	Pre-Auth ACL
Е	mployees	802.1X Success	Enterprise Access	Permit-Any dACL
C	Corporate Asset	MAB Success	Enterprise Access	Permit-Any dACL
P	hones	802.1X or MAB Success	Voice Access	MDA with Voice VSA + Permit-Any dACL
E	mployees	802.1X Fail -> MAB or Web-Auth Success	Enterprise Access	Permit-Any dACL
S	Sponsored Guest	802.1X Fail/Timeout -> MAB Fail -> Web-Auth Success	Limited + Internet Access	Permit-Internet dACL
	Inknown / Inauthorized	802.1X Fail/Timeout -> MAB Fail -> Web-Auth Fail	Limited Access	Pre-Auth ACL
Д	III	None (AAA server down)	Limited Access	Pre-Auth ACL

Phone Booting

Access Via the Security Settings Menu



802.1X Off by Default

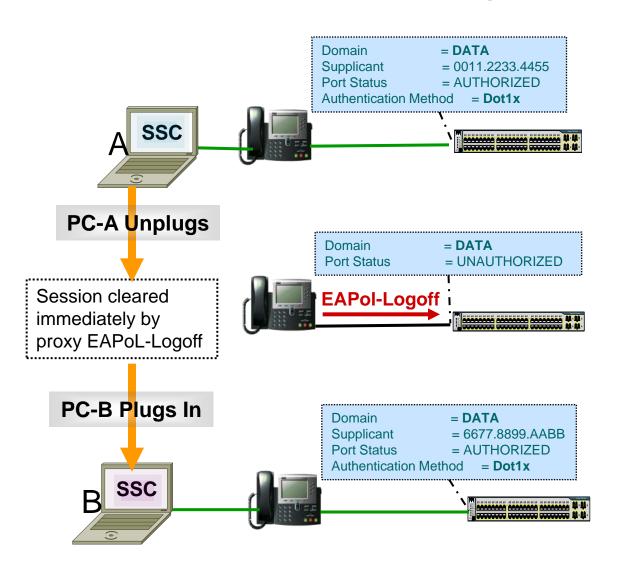
Set **EAP-MD5 Password**

Device **D** must ACS **User ID**

Cisco IP-Phone 802.1X

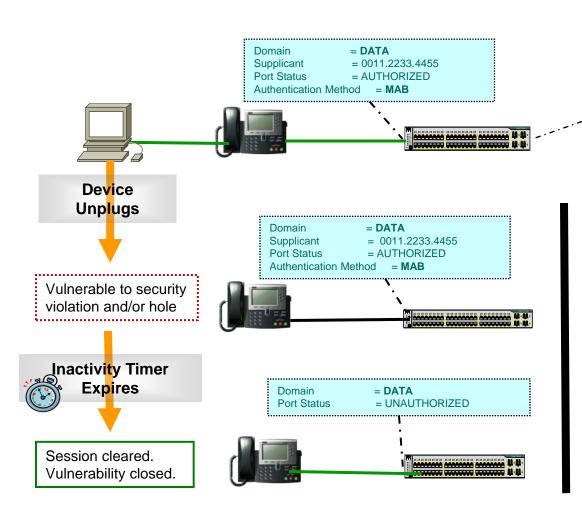
Checking Status

Reports and Activity


IPT & 802.1X: The Link-State Problem

2) Hackers can spoof MAC to gain access without authenticating

Partial Solution: Proxy EAPoL-Logoff


Caveats:

 Only for 802.1X devices behind phone

Requires:

Logoff-capable Phones

Partial Solution: Inactivity Timeout Options

interface GigE 1/0/5 switchport mode access switchport access vlan 2 switchport voice vlan 12 authentication host-mode multi-domain authentication port-control auto authentication timer inactivity [300 | server] mab

Caveats:

- Quiet devices may have to reauth; network access denied until re-auth completes.
- Still a window of vulnerability.

3K: 12.2(50)SE* 4K: 12.2(50)SG New

6K: 12.2(33)SXI

Partial Solution: MAC Move

- PC Connects and Authenticates
- 2 CAM Table updated (MAC/Port)
- 3 PC Moved to new location
- 4 PC Authenticates
- Previous Session deleted and CAM Table updated with new entry

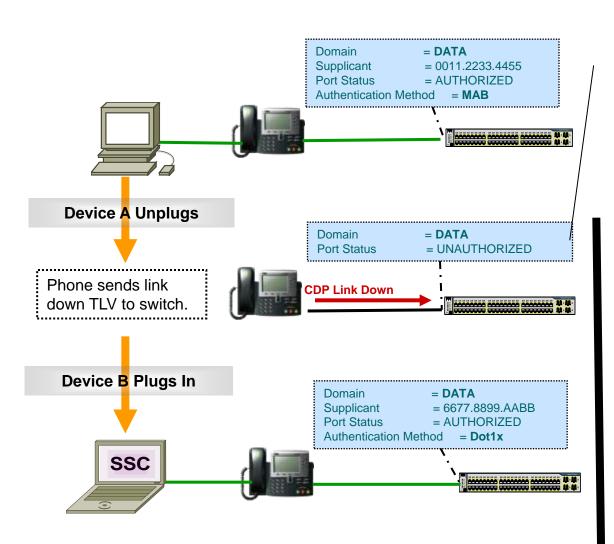
Wiring Closet

CAM TABLE

Switchport

Gigabit Ethernet 1/0/1

Gigabit Ethernet 1/0/14


MAC Addr

00-1C-25-BA-6D-3B 00-1C-25-BA-6D-3B

Best Practice: Combine MAC Move with Inactivity Timer

Full Solution: CDP 2nd Port Notification

id-4503#sho cdp neigh g2/1 detail

Device ID: SEP0015C696E22C

Entry address(es): IP address: 10.1.200.10

Platform: Cisco IP Phone 7971, Capabilities: Host

Phone Two-port Mac Relay Interface: GigabitEthernet2/1,

Port ID (outgoing port): Port 1 Holdtime: 168 sec

Second Port Status: Down

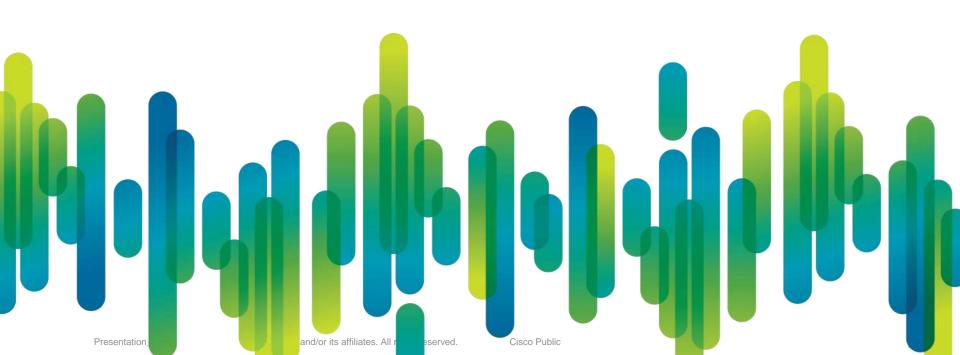
- ✓ Link status msg addresses root cause
- ✓ Session cleared immediately.
- ✓ Works for MAB, 802.1X, and Web-Auth.
- ✓ Nothing to configure

IP Phone: 8.4(1)

3K: 12.2(50)SE

4K: 12.2(50)SG

6K: 12.2(33)SXI


entation_ID © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 13

DEMO Time

CDP 2nd Port Notifications

Phase 3: High Security Access Control

Phase 3: ACME Gets Acquired by Widget, Inc.

New Security Policy & Network Requirements:

VLAN Segmentation

- Engineers on the ENG VLAN
- Machines on MACHINE VLAN
- Employees/managed assets on DATA VLAN.
- Unauthenticated devices on RESTRICTED VLAN only.

Branch Survivability

"fail open" when AAA server is unreachable.

Widget's Goals Can Be Met With High Security Mode

How this will happen

Policy Change	Solution Change
VLAN Segmentation	Dynamic Identity-based VLAN assignment
No unauthenticated traffic on DATA VLAN	Open mode -> Closed Mode
Unauthenticated devices on RESTRICTED VLAN only	Local authorization (AuthFail VLAN, Guest VLAN)
Branch Survivability	Critical Auth VLAN

High Security: Network Access Table

Endpoints	Authentication Status	Authorization	Implementation
All (including PXE)	Pre-Auth	None	
Employees	802.1X Success	Enterprise Access	
Corporate Asset	MAB Success	Enterprise Access	
Phones	802.1X or MAB Success	Voice Access	
Engineers	802.1X Success	Engineer Access	
Unknown / Unauthorized	802.1X Fail/Timeout -> MAB Fail	Limited Access	
All	None (AAA server down)	Enterprise Access	

Dynamic Authorization:

VLAN Assignment

Identity-Based

- Assigned VLAN is based on identity at time of authentication
- Identity can be individual or group

VLAN Name

- VLANs assigned by name (not number); allows for more flexible VLAN management
- Assigned VLAN must match switch configuration; mismatch results in authentication failure.

Standards-Based

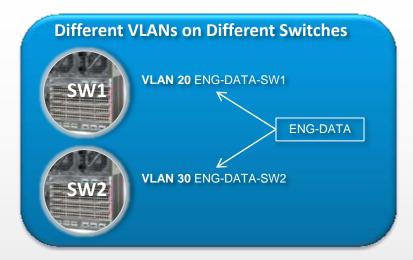

- Usage for VLANs is specified in the IEEE 802.1X standard
- RFC 2868 defines tunnel attributes that AAA server uses to send to VLAN name to switch

Tunnel Attributes

- [64] Tunnel-type—"VLAN" (13)
- [65] Tunnel-medium-type—"802" (6)
- [81] Tunnel-private-group-ID—<VLAN name>

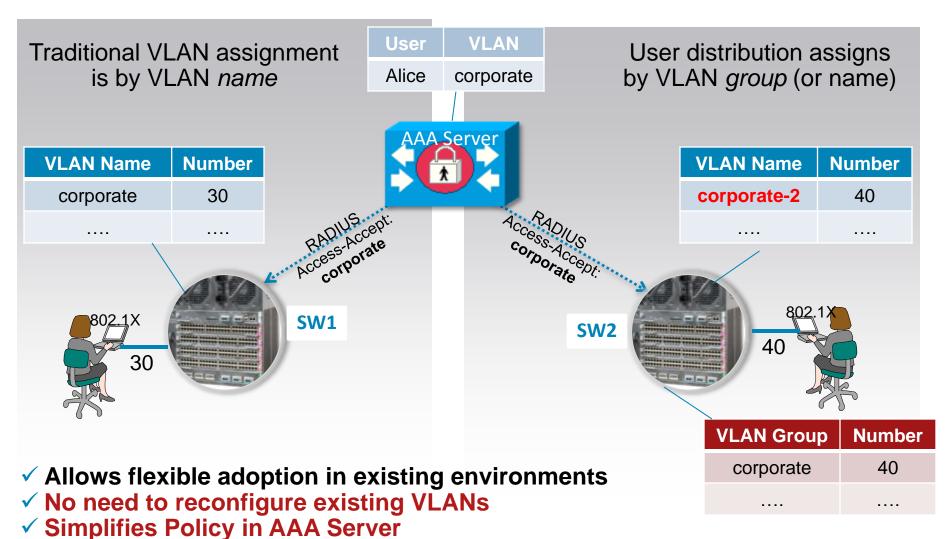
Segmenting Users, Devices and Networks

How to Extend IBNS Policy into the Network...

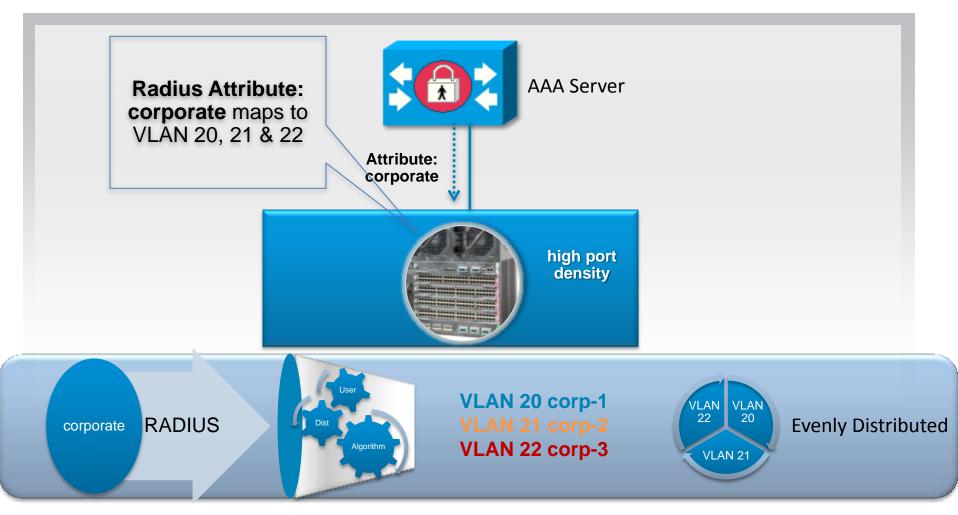

Use the Network to Provide Isolation and Simplified Policy Enforcement

- GRE tunnels and policy routing
- VRF-Lite end-to-end—(virtual route forwarding)
- VRF-Lite at the distribution with MPLS L3 VPNs at the core
- MPLS L3 VPNs end-to-end

802.1X User Distribution Enhances Dynamic VLAN Assignment


Addresses Two Use Cases:

- Allow mapping the Radius provided VLAN name to different VLANs on different switches (no need to re-configure Radius provided VLAN name).
- Allow distribution of Radius provided VLAN to multiple different VLANs locally available on the same logical switch (load balancing) (reduces broadcast domain)



User Distribution "Mapping" Can Simplify Migration to Dynamic VLANs

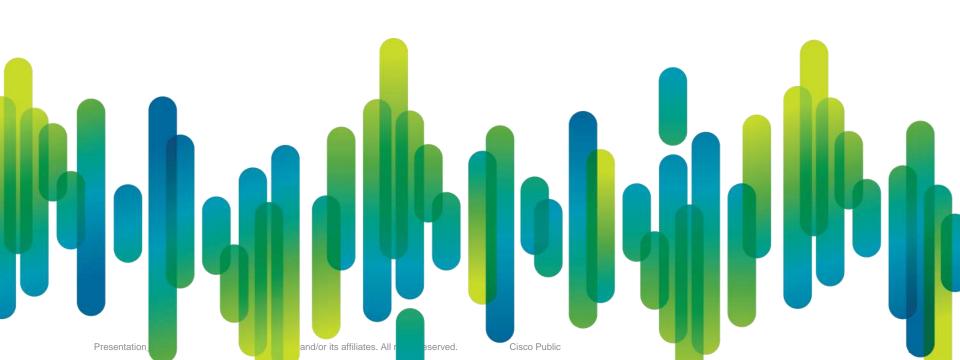
User Distribution: "Distribution"

Allows highly scalable 802.1X-based VLAN assignment in a large scale campus LAN deployment

Configuring VLAN groups

Switch(config)# vlan group <groupname> vlan-list <list of vlans>

<groupname>: Name for the VLAN group starting with an alphabet


dist of VLANs: Comma separated VLANs or a range of VLANs or a single VLAN

Switch(config)#vlan group corporate vlan-list 4 Switch(config)#vlan group corporate vlan-list 40-50 Switch(config)#vlan group corporate vlan-list 12,52,75

High Security: Network Access Table

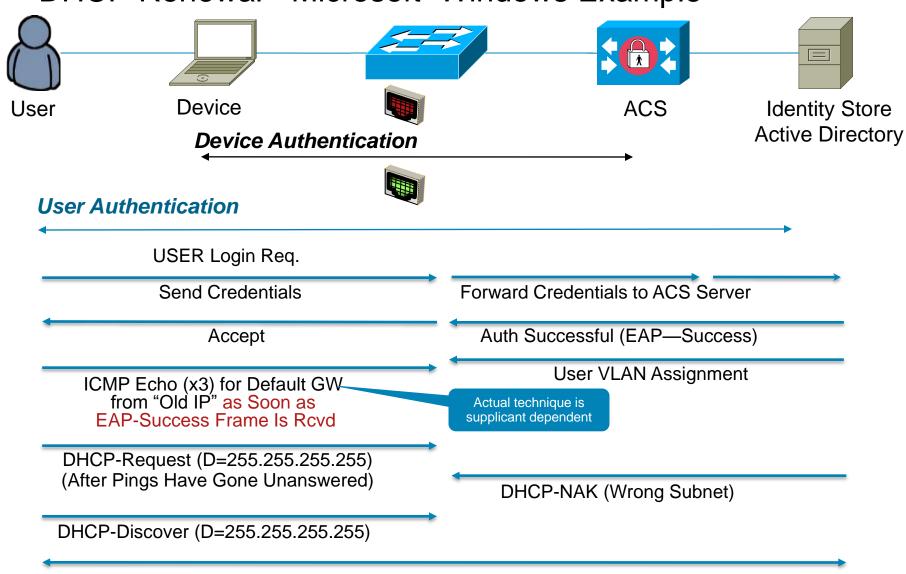
Endpoints	Authentication Status	Authorization	Implementation
All (including PXE)	Pre-Auth	None	Closed Mode
Employees	802.1X Success	Enterprise Access	Default DATA VLAN
Corporate Asset	MAB Success	Enterprise Access	Default DATA VLAN
Phones	802.1X or MAB Success	Voice Access	Voice VLAN
Engineers	802.1X Success	Engineer Access	ENG VLAN
Machines	802.1X Success	Machine Access	
Unknown / Unauthorized	802.1X Fail/Timeout -> MAB Fail	Limited Access	
All	None (AAA server down)	Enterprise Access	

User and Machine/Device Authorization

802.1X & Dynamic VLANs

Deployment Considerations

VLAN Proliferation


- Every access switch must support every assignable VLAN
- In multi-layer deployments, all these VLANs must be trunked to distribution layer.
- Every new VLAN will require a new subnet on every access switch (routed access & multi-layer*)

Address Changes

- Devices that change VLANs as a result of authentication MUST be capable of getting a new address on the new VLAN.
- Most supplicants CAN get a new address
- Most clientless devices CANNOT
- Even successful address changes can cause problems with end host functionality.

Coping with VLAN Change

DHCP Renewal - Microsoft Windows Example

VLAN Changes Can Disrupt Desktop Operation

- In Legacy (pre-Vista) Microsoft environments, changing the VLAN can break user and/or machine GPOs.
- Windows XP cannot re-negotiate secure connection with AD if IP address changes during GPO download.

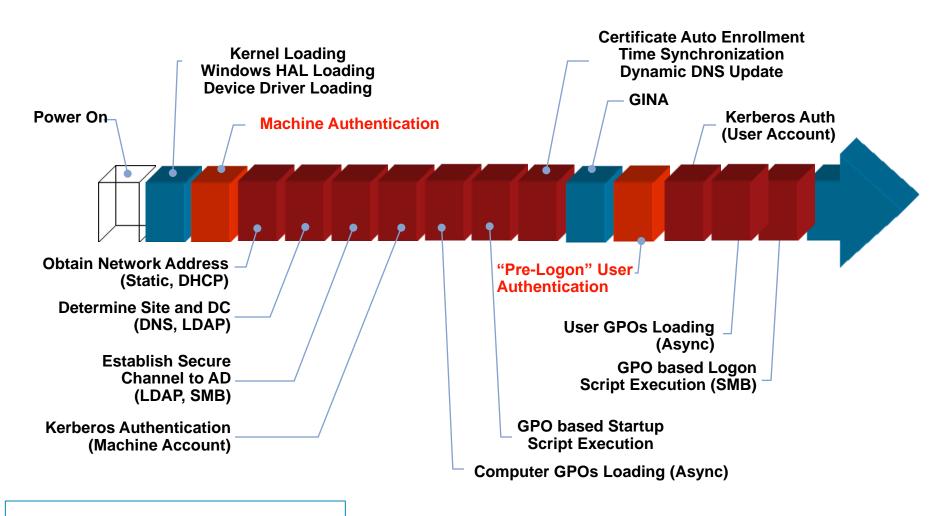
What's a GPO? And why should I care about breaking it?

A Group Policy Object (GPO) is used to deliver and apply configurations or policy settings to a set of targeted users and computer within an Active Directory environment. Windows Admins use GPOs for system compliancy and security enforcement, e.g.:

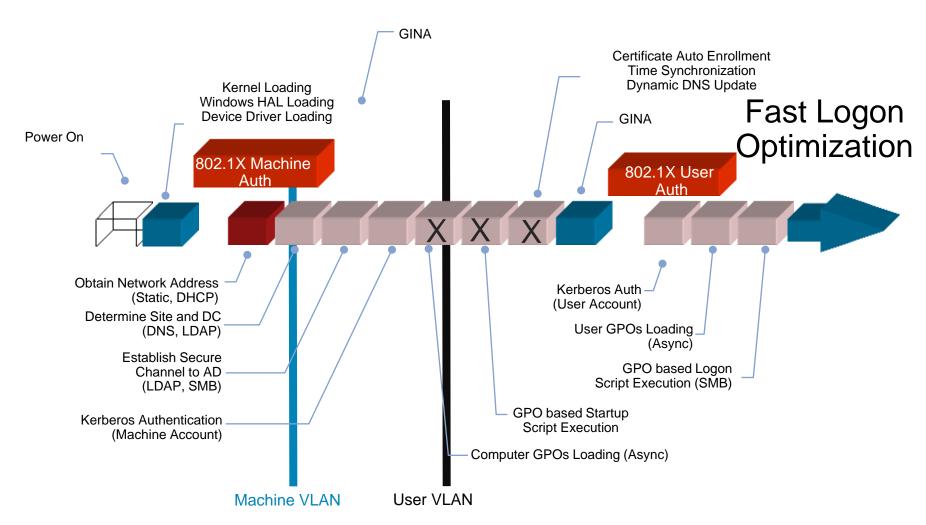
Network Device mapping

Applying Logon / Logoff scripts to workstations

Batch mechanism to trigger applications


Security compliance enforcement such as password rule, etc.

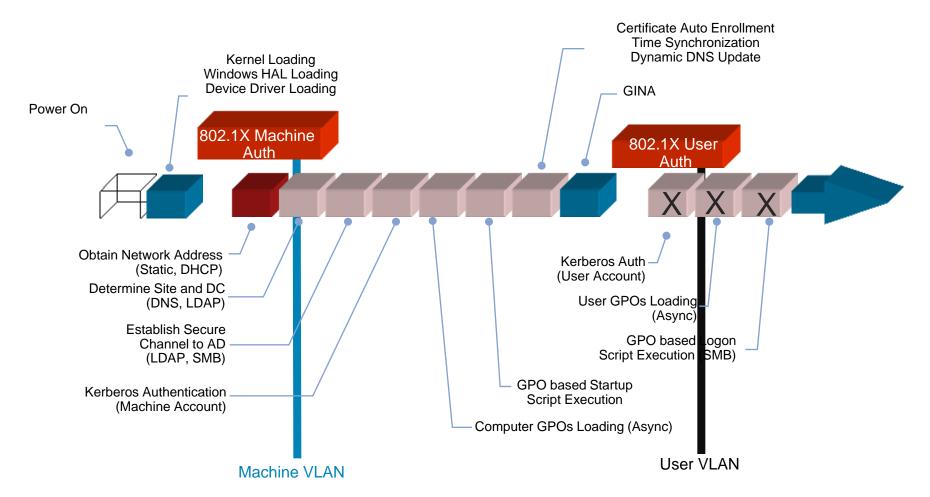
Breaking GPOs is a RPE (Resume Producing Event)

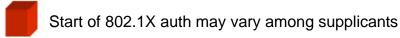

"Ideal" Microsoft Boot Process

If Only It Were This Easy

Real Boot Process With Fast Logon

Machine GPOs will Break with XP




Start of 802.1X auth may vary among supplicants

Components that are in race condition with 802.1X Auth

Real Boot Process With Race Conditions

User GPOs can Break with XP

Components that are in race condition with 802.1X Auth

Dynamic VLAN Assignment Best Practices

Vista SP2 or Windows 7:

- No Restrictions on VLAN assignment
- Vista and Win7 Can Renegotiate Secure Connection with AD when IP Address Changes

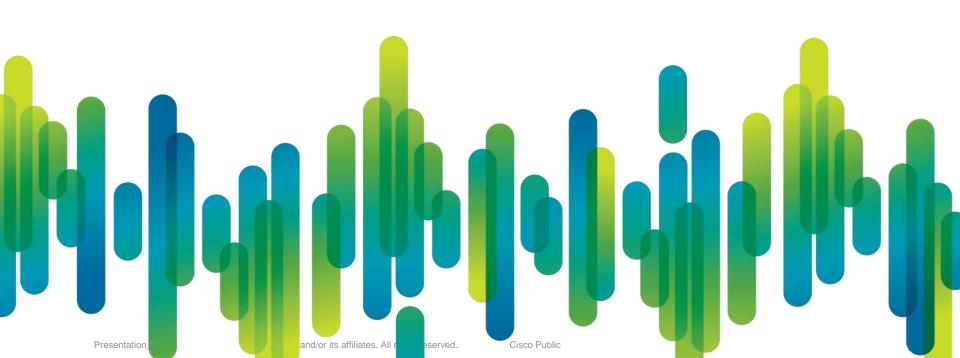
XP and earlier:

- Use Only Machine Authentication OR...
- Use the Same VLAN for User and Machine Authentication

Reconsider ACLs if you don't need segmentation.

High Security: Network Access Table

Endpoints	Authentication Status	Authorization	Implementation
All (including PXE)	Pre-Auth	None	Closed Mode
Employees	802.1X Success	Enterprise Access	Default DATA VLAN
Corporate Asset	MAB Success	Enterprise Access	Default DATA VLAN
Phones	802.1X or MAB Success	Voice Access	Voice VLAN
Engineers	802.1X Success	Engineer Access	ENG VLAN
Machines	802.1X Success	Machine Access	MACHINE VLAN
Unknown / Unauthorized	802.1X Fail/Timeout -> MAB Fail	Limited Access	
All	None (AAA server down)	Enterprise Access	


DEMO Time

Machine VLAN

ACS: using AD groups for Authorization Rules

High Security: Unknown Devices

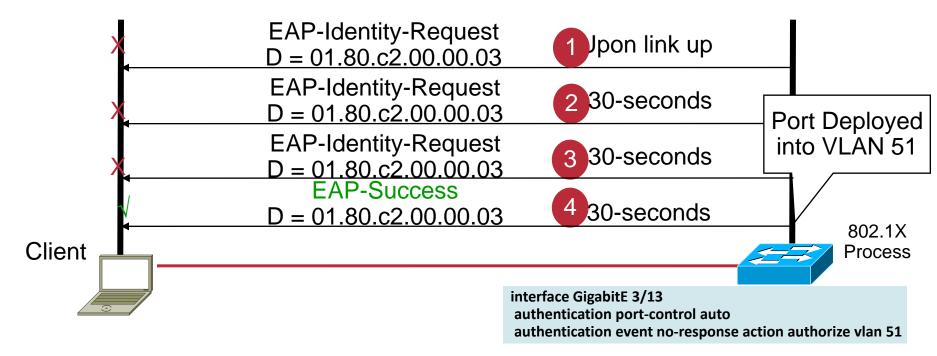
Flex-Auth for Unknown Devices

Agentless Devices in High Security Mode

Configurable behavior after 802.1X timeout :

Configurable behavior after 802.1X failure:

- 1) Next-Method
- 2) Guest VLAN


Flex-Auth enables a single configuration for most use cases

Configurable order and priority of authentication methods

Configurable behavior before & after AAA server dies

Non-802.1X Client

Guest VLAN

- Any 802.1X-enabled switchport will send EAPOL-Identity-Request frames on the wire (whether a supplicant is there or not)
- A device is only deployed into the guest VLAN based on the lack of response to the switch's EAP-Request-Identity frames (which can be thought of as 802.1X hellos)
- No further security or authentication to be applied. It's as if the administrator de-configured 802.1X, and hard-set the port into the specified VLAN

156

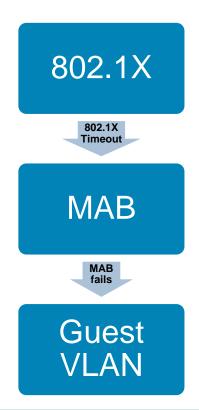
802.1X with Guest VLAN

Deployment Considerations

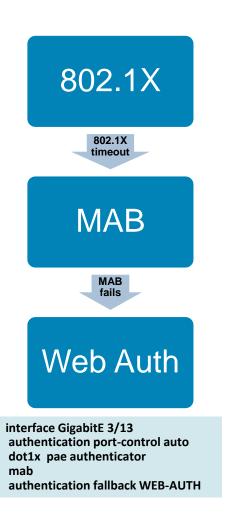
When a port moves to Guest VLAN, any number of additional MACs are allowed on the port without authenticating

Guest VLAN is a switch-local authorization -> centralized policy on AAA server is not enforced

Guest VLAN does not differentiate, e.g. guest users get the same access as a corporate printer


Guest VLAN can be fallback after 802.1X timeout and MAB fail

802.1X timeout dependency -> delayed network access.


- Default timeout is 30 seconds with three retries (90 seconds total)
- 90 seconds > DHCP timeout.

Guest VLAN and Web Auth Are Mutually Exclusive

interface GigabitE 3/13
authentication port-control auto
dot1x pae authenticator
mab
authentication event no-response action authorize vlan 40

Flex-Auth for Unknown Devices

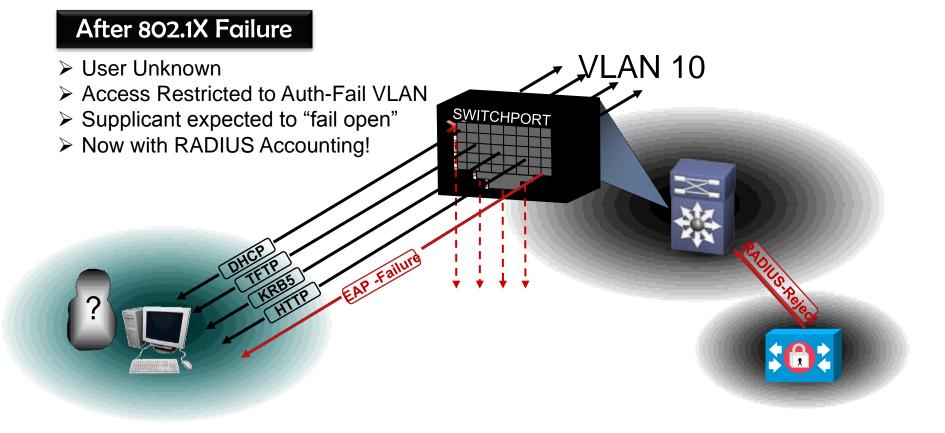
Devices that Fail 802.1X in High Security Mode

Configurable behavior after 802.1X timeout :

- 1) Next-Method
- 2) Guest VLAN

Configurable behavior after 802.1X failure:

- 1) Next-Method
- 2) AuthFail VLAN


Flex-Auth enables a single configuration for most use cases

Configurable order and priority of authentication methods

Configurable behavior before & after AAA server dies

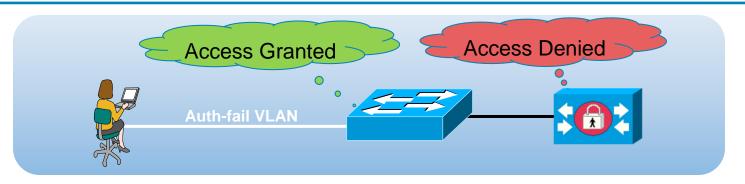
Failed 802.1X

Auth-Fail VLAN Is An Alternative to Next-Method

6506-2(config-if)#authentication event fail action authorize vlan 10

802.1X with Auth-Fail VLAN

Deployment Considerations


Supplicant cannot exit the Auth-Fail VLAN

• Only alternatives: switch-initiated re-authentication or port bounce

No Secondary Authentication Mechanism.

Auth-Fail VLAN, like Guest VLAN, is a switch-local authorization - > centralized policy on AAA server is not enforced

Switch and AAA server have conflicting views of network (mitigated by new RADIUS accounting)

High Security: Network Access Table

Endpoints	Authentication Status	Authorization	Implementation
All (including PXE)	Pre-Auth	None	Closed Mode
Employees	802.1X Success	Enterprise Access	Default DATA VLAN
Corporate Asset	MAB Success	Enterprise Access	Default DATA VLAN
Phones	802.1X or MAB Success	Voice Access	Voice VLAN
Engineers	802.1X Success	Engineer Access	ENG VLAN
Machines	802.1X Success	Machine Access	MACHINE VLAN
Unknown / Unauthorized	802.1X Fail/Timeout -> MAB Fail	Limited Access	Auth-Fail VLAN = Guest VLAN = UNAUTH VLAN
All	None (AAA server down)	Enterprise Access	

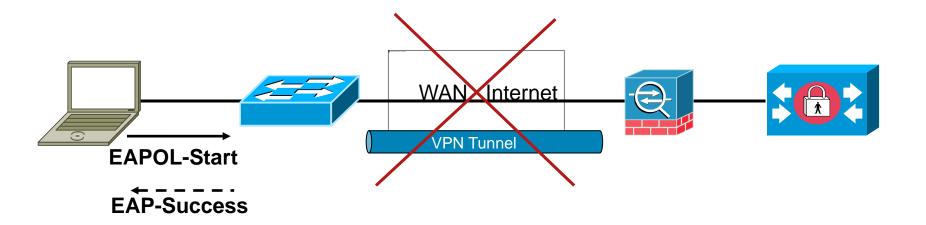
Flex-Auth for Unknown Devices

Devices are Unknown because AAA is Down

Configurable behavior after 802.1X timeout :

- 1) Next-Method
- 2) Guest VLAN

Configurable behavior after 802.1X failure:


- 1) Next-Method
- 2) AuthFail VLAN

Flex-Auth enables a single configuration for most use cases

Configurable order and priority of authentication methods

Configurable behavior before & after AAA server dies: Critical VLAN

Inaccessible Authentication Bypass

- Switch detects AAA unavailable by one of two methods
 - 1. Periodic probe
 - 2. Failure to respond to AAA request
- Enables port in critical VLAN if defined, otherwise to switchport **VLAN**
- Existing sessions retain authorization status
- Applies to data devices only
- Recovery action can re-initialize port when AAA returns

RADIUS Server(s) Inaccessible

```
radius-server 10.1.10.50 test username KeepAliveUser key cisco
radius-server dead-criteria time 15 tries 3
radius-server deadtime 1
interface GigabitEthernet1/13
 description Dot1x Demo with Auth-Fail VLAN
 switchport access vlan 2
 switchport mode access
 switchport voice vlan 200
 authentication event fail action next-method
 authentication event server dead action authorize vlan 100
 authentication event server alive action reinitialize
 authentication order dot1x mab
 dot1x pae authenticator
 authentication port-control auto
 dot1x timeout tx-period 10
                            Critical VLAN can be anything:
 dot1x max-req 2
mab

    Static VLAN

 spanning-tree portfast

    Same as guest/auth-fail VLAN
```

New VLAN

High Security: Network Access Table

Endpoints	Authentication Status	Authorization	Implementation
All (including PXE)	Pre-Auth	None	Closed Mode
Employees	802.1X Success	Enterprise Access	Default DATA VLAN
Corporate Asset	MAB Success	Enterprise Access	Default DATA VLAN
Phones	802.1X or MAB Success	Voice Access	Voice VLAN
Engineers	802.1X Success	Engineer Access	ENG VLAN
Machines	802.1X Success	Machine Access	MACHINE VLAN
Unknown / Unauthorized	802.1X Fail/Timeout -> MAB Fail	Limited Access	Auth-Fail VLAN = Guest VLAN = UNAUTH VLAN
All	None (AAA server down)	Enterprise Access	Critical VLAN

Mobility, Agility and Security Université de Montréal

Wired 802.1X Network Access control

Speaker: Michel L'Heureux, ing. PMP Networking department manager at Université de Montréal - DGTIC June 2010

Université de Montréal

A Major University

- Founded in 1878, Université de Montréal, with its two affiliated schools: École Polytechnique and HEC Montréal, is now the largest university in Quebec and the second largest in Canada.
- Deeply rooted in Montreal and dedicated to its international mission, the Université de Montréal is one of the top universities in the French-speaking world.
- With its 13 programs, 80 departments and schools, the Université de Montréal offers programs in almost all academic fields
- The University earmarks close to \$460 million for basic and applied research each year, making it Canada's second most active university in the field.

A Network for the Future

- Network architecture project started in 2007
 - Objective: Become one of the best University Campus network
- Switching
 - Backbone upgrade to 10 Gb/s, MPLS in the Core
 - VSS for core redundancy and replace spanning-tree
 - Catalyst 6500E for Core and Distribution
 - Catalyst 4500E for 1 Gb/s network Access
- IP Telephony
 - 9000 IP Phones
 - Call manager v7, 2 Unity, 3 IPCC, 5 SRST
- Wifi
 - 2500 Access Points 802.11n
- Security
 - 802.1X authentication for all wired ports and wifi access

As we speak

- Switching routing infrastructure
 - 80% completed
- > IP Telephony
 - 80% completed
- > Wifi
 - 60% completed
- Security
 - More than a thousand 802.1X-enabled wired ports
 - 25000 ports planned

Network security

An internal audit performed in 2005 demonstrated the University network access did not comply with security best practices.

- Private and distinct network from the Internet
 - > 132.204.x.x -> 10.x.x.x
- Access control and secured (authentication)
 - 802.1X for each wired network port
- Network segmentation based on user role (Community).
 - Employee, Student and guest
 - Infrastructure community

Community segmentation

User community:

- Based on user role
- Assign from top security level.

Workstations	Security needs	Risk
Employees	Consult and manage confidential information	Lower risk for managed workstation (SCCM, Anti-virus, GPO)
Students	Basic + school work	High due to unmanaged workstation
Guest	Basic	Very High unknown workstation

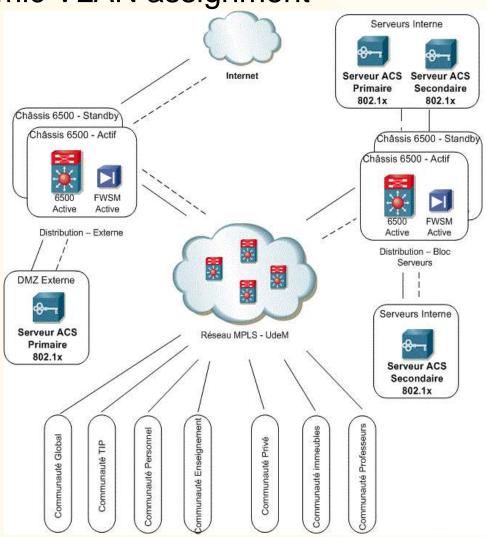
Community segmentation

Isolating the communities

- Needs to reinforce new services for collaboration between different user communities
 - File sharing
 - Printing
 - Better use of central ressources

Univ de Montréal 802.1X deployment

- Use of centralized and unique AD accounts through Cisco ACS Radius servers
- Used of OS native « Supplicant » whenever possible. XP, Win7 and MAC
 - Credentials: AD Password
 - EAP Method: PEAP-MSCHAPv2
- A university managed workstation (registered on the AD domain) must do both Machine & User authentication. All others do only User auth.


Univ de Montréal 802.1X deployment (cont)

- Faculty Staff, students and guests are invited (and encouraged) to use 802.1X configuration with a supplicant
- Exceptions
 - IP Phones are not 802.1X aware (except G series) so CDP is used to bypass 802.1X
 - Web Auth is used for the first time user and for workstations not supporting supplicant
 - MAB (Mac Authentication Bypass) For device not supporting supplicant with no possibility to do Webauth (Printer, surveillance cameras, etc.)
 - Critical Auth VLAN

Dynamic VLAN assignment

Dynamic VLAN assignment

- How many VLANs are used?
 - One VRF for each "community"
- How do you managed VLAN assignment for users vs. machines?
 - 1 VLAN per community per switch
 - Machines do not get a "community" Vlan. They land in a pre-auth VLAN

Environment Diversity snapshot

1. Remote access

- Remote access (RDP)
- Remote access Mac/Apple
- Net Support School

2. Licenses servers

- Windows 7
- Adobe, Sequencher,
 FileMaker, MatLab and others

3. Startup services

NetBoot (Mac/Apple)

4. Linux

■SSH, LDAP, Kerberos, NIS, NFS / Samba, Rdist, rsync, scp, puppet

5. Other cold imaging, backup and recovery software

- GHOST
- ■RedHat Network / YUM, Yellowdog Updater Modifier
- **SCCM2007** (System Center Configuration Manager)

Challenge and solutions

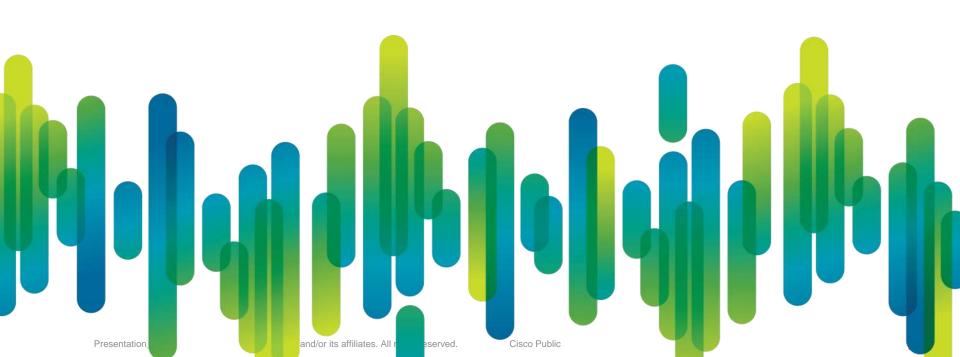
- « GHOSTing machines »
 - Use of MAB to configure GHOST environment
- Remote Desktop Windows
 - Must leave the desktop "logged in" and locked

Challenge and solutions (cont)

- WebAuth on Catalyst 4500
 - « Authentication timeout », this issue produced a forced reauth after 30 min. Users would loose their session everytime.
 Could not configure this through normal timeout control. This was escalated to Cisco.
 - Early Fix was supplied to correct this. Waiting for the next IOS release 12.2.53 SG3 for full permanent integration.
 - Webauth portal login page unable to display any custom images or logo.
 - Webauth portal login page cannot redirect the user to any other pages or Web site

Challenge and solutions (cont)

- « Apple Net Boot »
 - Very limited fonctionnality in a routed environment
 - Challenge implementing 802.1X config
 - Support for scripting is only available from 10.6.2 OS

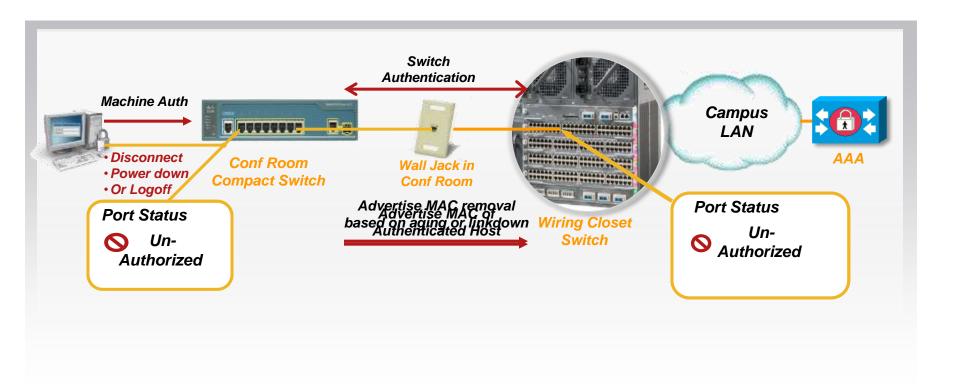

Lessons Learned

- A few advises for proper deployment:
 - Problems are not so much in the 802.1X protocol but more in the operational aspect of the deployment.
 - Careful definition and identification of the users needs is mandatory.
 - Cisco doesn't supply tools to integrate 802.1X in an heterogeneous environment like a university campus.
- Monitoring and troubleshooting
- At deployment time, prepare to cope with a flow of helpdesk calls
 - Plan in building your own processes and tools.

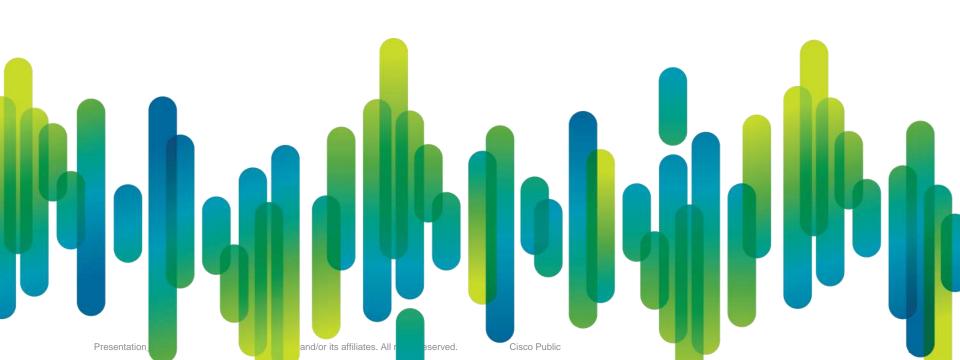
Questions

Advanced Features NEAT

NEATProblem Statement & Drivers


- Customers requirement is to have (network) device based access control for tighter security
- Compact switches like Cisco Catalyst 8-port 3560 or 2960 will be deployed in an unsecured area such as cubicles, conference rooms, etc.
 - outside the secured wiring closet
- These network devices can potentially be swapped with hacker devices to gain network access, compromising the network security

Result


Customers want *network device authentication* to *mitigate* these types of *security threats*

Network Edge Authentication Topology Network Edge Trust Extension

- Extend Trust to into physically unsecured locations (e.g., conference room, cubical, etc.)
- Secure access control for shared media access

Advanced Features CoA

RADIUS Change of Authorization (CoA)

RFC 3576: Defines "Packet of Disconnect"

Terminates session

Cisco has extended support for CoA

- Terminate session
- Re-authenticate
- Port bounce
- Port down

Each type of Action has specific use case support

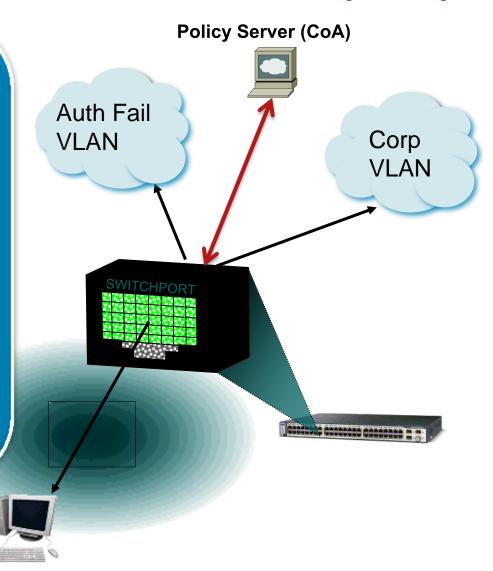
CoA - Use Cases

Failed Authentication with Failed Auth VLAN

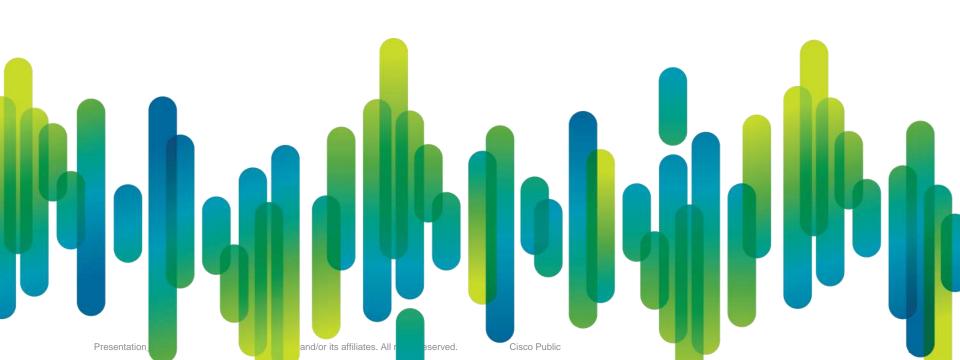
 CoA can reauth or terminate a session can retrigger authentication to try authentication after remediation

Adding new mac addresses to the network

- After Profiling or other change order an agentless devices may need it's IP changed
- CoA with Port Bounce can be used to reset the IP stack on an agentless device

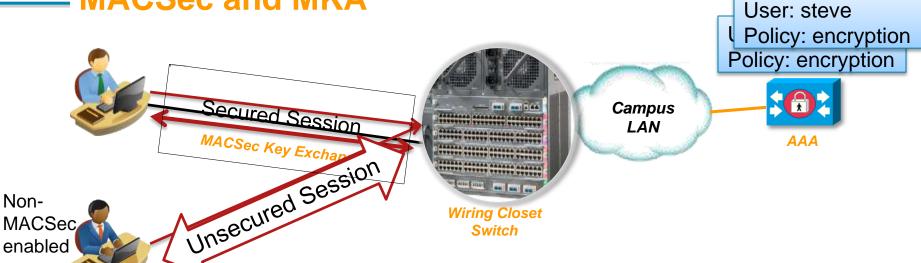

Abnormal/Destructive behavior is observed on the network

 CoA with Port Down is a emergency shut off of a port. It can only be re-enabled by CLI


RADIUS Change of Authorization (CoA)

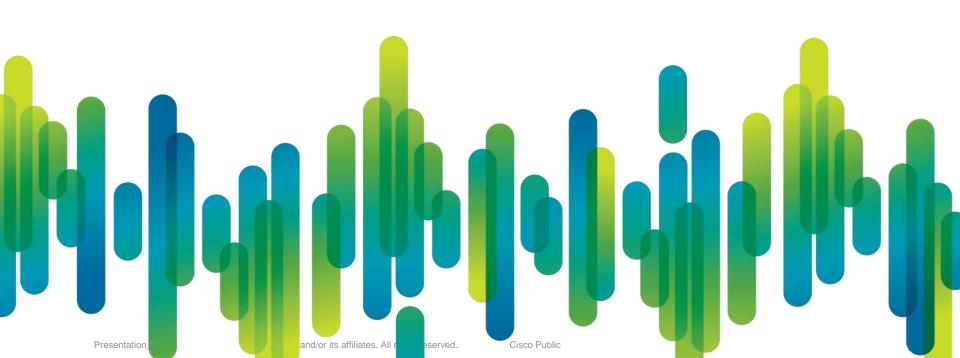
Dynamic session control from a Policy server

- Re-authenticate session
- Terminate session
- Terminate session with port bounce
- Disable host port
- Session Query
 - For Active Services
 - For Complete Identity
 - Service Specific
- Service Activate
- Service De-activate
- Service Query



Advanced Features 802.1X Rev

Identity 4.1 Feature: 802.1X-Rev



- 1 User bob connects
- 2 Bob's policy indicates end point must encrypt
- 3 Key exchange using MKA, 802.1AE encryption complete User is placed in Corp VLAN Session is secured
- 4 User steve connects
- 5 Steve's policy indicates end point must encrypt
- 6 End point is not MACSec enabled Assigned to Guest VLAN

802.1X-Rev Components

- MACSec enabled switches (Incredibles)
- AAA server 802.1X-Rev aware
- Supplicant supporting MKA and 802.1AE encryption

Advanced Features Monitoring & Troubleshooting

Monitoring and Troubleshooting

IOS Switches

ACS Servers

SNMP, Syslog, CLI, Netflow

Syslog

ACS 5.1 Monitoring & Troubleshooting

Monitoring **User Reporting**

- Where, when, how connected
- ■How long, how often
- Last passed, last failed
- Switch Log Reporting

System Reporting

■Pass/Fail ratio

Device Reporting

- Profile History
- Status of profiled device

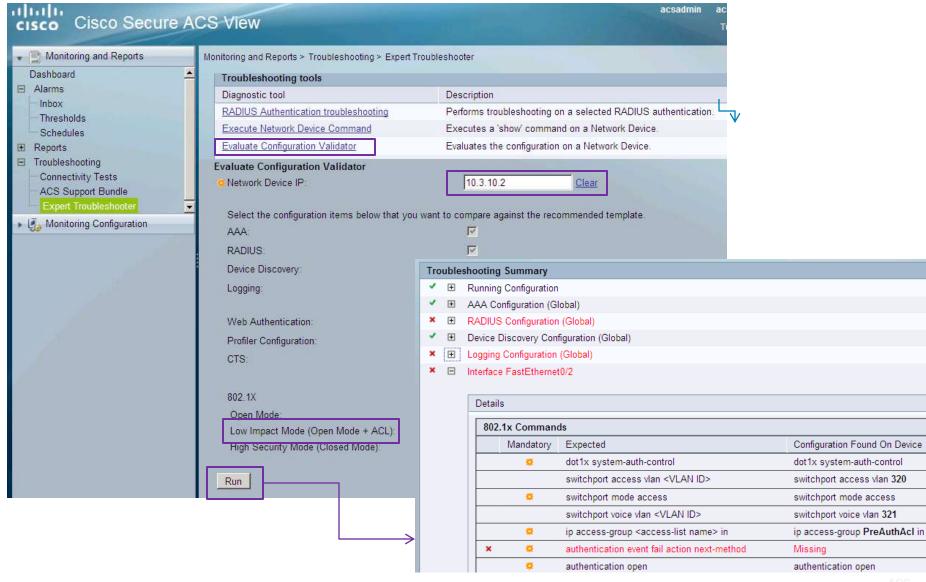
Troubleshooting

- Expert Troubleshooting Tool
- Troubleshooting Workflow
 - -Authentication Failure
 - -Authorization Failure
- Switch log failure analysis

Alerts

- •Unknown NAS
- ■New ACS, new NAD
- External DB unavailable
- Failed Auths thresholds
- Passed auths thresholds
- AAA down

ACS 5.1 Uses Multiple Sources of Information For Monitoring/Troubleshooting


Sources

- RADIUS logs
- Syslog from ACS(s)
- Syslog from Switches
- CLI
- SNMP

ACS 5.1 Tools

- Authentication Reports
- Session Directory
- Configuration
 Validator
- Network Device & Session Details
- Expert Troubleshooter

Configuration Validator

On Demand SNMP Polling

MIB-II (RFC-1213-MIB)
INTERFACE-MIB
IEEEE8021-PAE-MIB
CISCO-PAE-MIB
CISCO-AUTH-FRAMEWORK-MIB
CISCO-MAB-MIB

Network Device > Session Status Details

Network Device IP: 10.3.10.2

Network Device Interface: FastEthernet0/2

Generated on December 22, 2009 9:49:45 AM PST

Network Device Information

Name: <u>CL10-aSW.demo.local</u>

Location: in virtual heaven

Contact: Ken Hook khook@cisco.com

Cisco IOS Software, C3560 Software (C3560-IPBASEK9-M)

Description: Copyright (c) 1986-2009 by Cisco Systems, Inc.

Compiled Fri 25-Sep-09 08:13 by sasyamal

OS Image: Cisco IOS Software, C3560 Software (C3560-IPBASEK9-M)

Version 12.2(52)SE, RELEASE SOFTWARE (fc3)

OS Version: Copyright (c) 1986-2009 by Cisco Systems, Inc.

Compiled Fri 25-Sep-09 08:13 by sasyamal

Port Details

Interface: FastEthernet0/2

Link Status: up

Authentication Status : authorizationSuccess

Sessions: 0A030A020000007F18959085

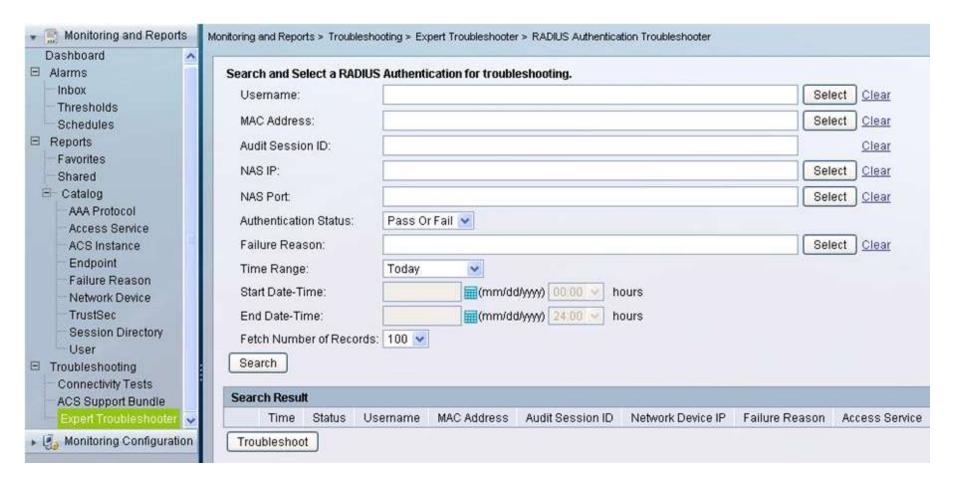
Client Mac Addresses : 00:50:56:81:55:01

Data or Voice : data
Authentication Mode : open
Authentication Port Control : auto

Authentication Enabled : disabled
Authentication Order : dot1x mab webauth (default)

Authentication Priority: dot1x mab webauth (default)

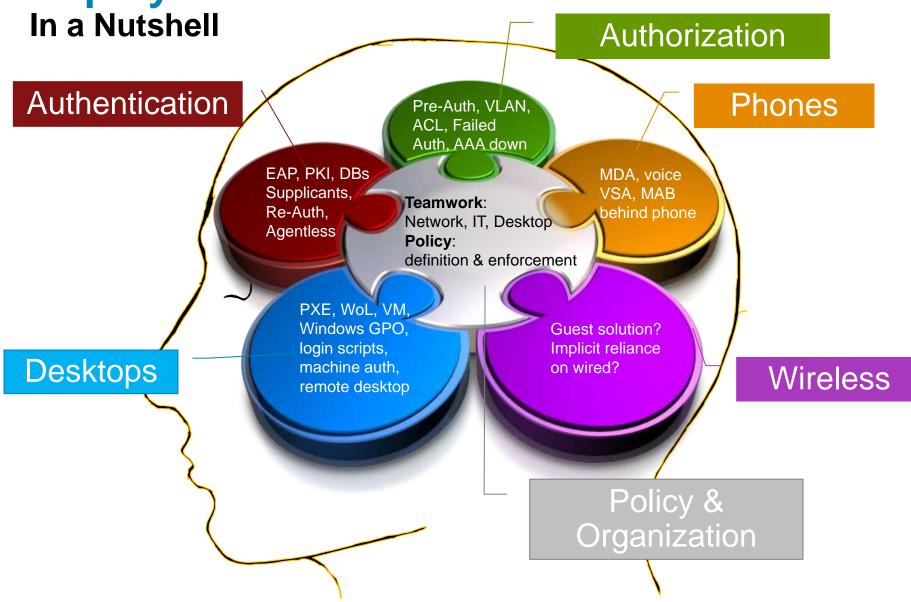
Authentication Host Mode: multiDomain


Centralized View of Switch Syslogs

Network Device > Network Device Log Messages				
Date: December 22, 2009				
Generated on : December 22, 2009 10:59:05 AM PST				
Reload				
Logged At	Device IP	Message	Туре	RADIUS Audit Session ID
December 22,2009 10:59:00.726 AM	10.3.10.2	Authorization succeeded for client (00-15-C6-96-E2-2C) on Interface Fa0/5	AUTHMGR- 5-SUCCESS	0A030A020000008718C9AA60
December 22,2009 10:58:59.406 AM	10.3.10.2	Authentication successful for client (00-15-C6-96-E2-2C) on Interface Fa0/5	DOT1X-5-SUCCESS	0A030A020000008718C9AA60
December 22,2009 10:58:21.996 AM	10.3.10.2	Authorization failed for client (00-0C-29-E1-6C-2D) on Interface Fa0/3	AUTHMGR-5-FAIL	0A030A020000008B18F1089A
December 22,2009 10:58:20.976 AM	10.3.10.2	Authentication successful for client (00-0C-29-E1-6C-2D) on Interface Fa0/3	DOT1X-5-SUCCESS	0A030A020000008B18F1089A


Authentication passed (credentials were good) but switch was unable to apply authorization instructions (e.g. bad VLAN assignment).

Expert Troubleshooter


Research failures by troubleshooting workflows

Session Summary

Deployment Considerations

Summary

- 802.1X improves enterprise security
- 802.1X improves enterprise visibility
- 802.1X deployable now
 New features have significantly simplified deployment
 Deployment scenarios can be used as a starting point
- 802.1X is not only a network project, it affects the whole IT organization

